• Title/Summary/Keyword: 잔골재 종류변화

Search Result 25, Processing Time 0.024 seconds

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Improvement of Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Improvement Material Type and Replacement Ratio (품질향상재 종류 및 치환율 변화에 따른 순환잔골재 사용 고로슬래그 모르타르의 품질향상)

  • Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.76-83
    • /
    • 2012
  • In this study, the research examined the effect on FC, WG, RP replacement ratio on the quality improvement of BS mortar using the RA. First of all, the flow value increased as the FC contents increased, and decreased as the WG and RP contents increased. The air contents was reduced as the FC and RP contents increased, but was increased as the WG contents went up While the compressive strength of 1 : 7 mix proportion increased with the increase of the FC and WG contents, it decreased as there was more RP contents. The compressive strength of RP could increase as the mix proportion increased, but the difference depending on the improvement material type and replacement ratio decreased gradually. The absorption deteriorated as the FC and RP contents increased in all the mix proportions, but improved a little when WG was used. Meanwhile, the absorption decreased as the compressive strength improved in all the mix proportions as a correlation, but the order was FC, RP and WG depending on the quality improvement material types. The FC and WG were most favorable in terms of quality improvement as a total analysis, and the RP and WG was most effective in terms of economical efficiency and resource recycling.

  • PDF

A Study on the Rheology Properties for Development of Sprayed High Performance Fiber Reinforced Cementitious Composites for Protection and Blast Resistant (방호·방폭용 뿜칠형 고성능 섬유보강 시멘트 복합재료 개발을 위한 레올로지 특성 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Park, Man-Seok;Sung, Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.188-195
    • /
    • 2014
  • This paper was evaluated the rheology properties according to each step of paste, mortar and HPFRCC as a part of the basic study to development of sprayed high performance fiber reinforced cementitious composites(HPFRCC) for protection and blast resistant. Rheology test results in step of paste, in case of GGBFs and FA, it showed that the plastic viscosity and yield stress reduced gradually according to the increase of mixing rate, and in case of SF, the plastic viscosity and yield stress increased radically starting from the mixing rate of 10%. Rheology test results in step of mortar, type of aggregates, it showed that particle shape and grading of aggregate is influence on plastic viscosity and yield stress, and change of volume ratio is influence on plastic viscosity than yield stress. Fluidity and rheology test results in step of HPFRCC, if after a fiber mixed, it showed that viscosity agent is more effective to improve the fluidity and fiber dispersion than superplasticizer.

An Experimental Study on the Application of Measuring Method of Water Content for Quality Control of Concrete (콘크리트 품질관리를 위한 단위수량 측정 기법의 적용성에 관한 실험적 연구)

  • Kim, Yong-Ro;Choi, Il-Ho;Jung, Yang-Hee;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.179-188
    • /
    • 2007
  • Recently, the concern on the receipt of poor ready-mixed concrete in the construction field and the durability of concrete has been increased. Based on the such background, a large number of measuring methods of water content for fresh concrete have been developed and enforced in a developed country. In this study, to investigate practicality for quality control of ready-mixed concrete among various water content measurement techniques, microwave range method, air meter method and capacitance measurement method as measuring methods of water content were selected. Then, it was evaluated estimating performance of water content according to the change of binder types, fine aggregate types, absorption ratio, water content and water-binder ratio in series I and II. Also, it was examined influence on error occurrence of water content according to change of properties of used materials in series III. Finally, based on this study, it was proposed fundamental data to utilize measurement technique of water content to quality control of ready-mixed concrete in construction field.

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.