• Title/Summary/Keyword: 작용온도

Search Result 2,065, Processing Time 0.027 seconds

Soil Moisture Influence on Growth of Cover Vegetations and Water Economy (토양수분(土壤水分)이 피복용식물(被覆用植物)의 생장(生長) 및 수분경제(水分經濟)에 미치는 영향(影響))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.1-32
    • /
    • 1977
  • This study has been made to find out more effective way of vegetation establishment on severely denuded forest land from the viewpoint of soil moisture regimes. Various environmental factors were measured to estimate soil moisture conditions of different sites. Soil moisture influence on growth of over vegetations, water requirement and drought resistance were analyzed. The efficiency of water use was also reckoned at different fertility levels and different soil moisture conditions. This research is composed of field experiment and green house experiment. Field experiment includes height growth, survival and coverage analysis of cover vegetations (Robinia pseudoacacia L., Lespedeza bicolor Turcz, Arundinella hirta Tanaka var. ciliare Koidzumi.) with 4 fertility level treatments on 3 slopes (Steep: $37^{\circ}$, Moderate: $25^{\circ}$, Gentle; $17^{\circ}$) during dry season (1 April-30 June) and wet season (1 July-10 September). At the same time temperature, relative humidity and precipitation were measured to understand the environmental changes. Soil moisture conditions were measured with soil moisture meter with 24 soil cells. Green house experiment comprised height, fresh weight and dry weight measurements of cover vegetations with 4 fertility levels and 3 moisture conditions for 70 days. The results extracted from experiments are as follews. 1. Cover vegtations have 3 patterns of water requirement at the early stage of growth. a) Robinia type has high water requirement and weaker drought resistance. b) Lespedeza type has low water requirement and stronger drought resistance. c) Arundinella type has moderate water requirement and weaker drought resistance. 2. The vegetations have different optimum fertility levels in different soil moisture supply condition. a) Robinia needs a low fertility level in dry condition and a high level in wet condition. b) Lespedeza needs only low fertility level in all conditions. c) Arundinella needs a low fertility level in dry condition and a high level in wet condition. 3. The efficiency of water use (Water/1g dry weight) by fertility levels is different from one another. Robinia and Arundinella have a good efficiency at low fertility level in dry condition and at high fertility level in wet condition. Lespedeza has a good efficiency at low fertility level in all conditions. 4. $P_2O_5$ requirement of Robinia and Lespedeza is high, but that of Arundinella is low. Soil moisture condition has a great influence on $P_2O_5$ absorption in dendued forest land. Once Vegetations are established on suitable sites with optimum fertitity level according to different moisture condition, even the small amount of soil water in denuded land can he used with high efficiency and the effect of fertility treatment can be maximized.

  • PDF

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF