• Title/Summary/Keyword: 작물생육

Search Result 3,814, Processing Time 0.039 seconds

Growth and crop residue of soybean and barley grown at high paraquat level of the orchard soil (고농도 paraquat 잔류 과원토양에서의 콩과 보리 생육 및 작물 잔류)

  • Chun, Jae-Chul;Park, Nam-Il;Kim, Sung-Eun;Chun, Jae-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.85-89
    • /
    • 1998
  • Effect of soil residue paraquat (1,1-dimethyl-4,4-dipyridinium dichloride) on growth of barley (Hordeum vulgare L. cv. Sacheon No.6 and cv. Tapgolbori) and soybean [Glycine max (L.) Merr. cv. Alcheon and Danyeop] was investigated. Changes in soil residue paraquat during the cultivation period and residue amount in the p1ants at harvest were also determined. Experiments were conducted at two paraquat residue conditions; the first was done in an apple orchard soil where paraquat residue recorded 30.2 ppm in 1996, but decreased to about 9 to 9.8 ppm at the time of crop seeding and the second was conducted in the soil fortified to about 27 to 32 ppm paraquat residue. In both conditions, no crop injury due to the residue paraquat was observed and number of emerged seedlings and plant height of the two crops were not affected by soil residue paraquat. Residue amount of paraquat in the plants occurred less than 0.5 ppm detection limit. At the first condition, soil residue paraquat was further slightly decreased for 90 days after seeding, while no great change in the residue level was found at the second condition for 30 days after seeding. The results suggest that no carry-over effect occurs at about 30 ppm of soil residue paraquat and at present crop cultivation in Korean orchard soils are safe with respect to crop growth and paraquat residue in the plants.

  • PDF

Impacts of Cover Crops on Early Growth, Nitrogen Uptake and Carbohydrate Composition of Pepper Plants (고추의 초기생장, 질소흡수 및 탄수화물 합성에 대한 녹비작물 시용효과)

  • Sung, Jwa-Kyung;Lee, Sang-Min;Lee, Yong-Hwan;Choi, Du-Hoi;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Sufficient inorganic nitrogen supply for crop growth is crucial for economically sustainable organic farming. The effects of an application of cover crop biomass on crop growth, nitrogen utilization and carbohydrate composition were investigated during early stage. Short-term changes in soil nitrogen after incorporating fresh hairy vetch and rye shoots were measured. The inorganic nitrogen from cover crops reached the peak at 15 ($NH_4-N$) and 24 ($NO_3-N$) days after incorporation, and then decreased rapidly. The highest concentration of soil nitrate showed at 27 days of incorporation in hairy vetch and at 18 days in rye, and three fold differences exhibited between two treatments. Crop growth under hairy vetch or rye incorporation significantly differed. At 20 DAT, dry matter production in NPK and hairy vetch was about two fold greater than that in rye. Difference in decomposing rates of hairy vetch and rye had also influence on nitrogen status in leaves and roots of pepper plants. Total nitrogen was greater in NPK and hairy vetch than in rye until 20 DAT, whereas inorganic nitrogen (nitrate and nitrite) concentration was higher in rye. Temporal changes in soluble sugars and starch in pepper plants among treatments were similar, although difference in the amount existed. It was suggested that hairy vetch as an alternative nitrogen source promoted crop growth and mineral utilization during early growth stage, whereas an obvious effect in rye was not found.