본 논문에서는 Mathematical Markup Language(MathML) 형식으로 작성된 수학식 분류를 위해 필요한 자질과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 이것은 MathML 형식의 수학식을 분석하기 위한 전처리 작업으로, 연산자의 모호성을 해소하기 위한 가장 기본적인 단계에 해당한다고 볼 수 있다. 실험에 사용되는 기본자질(Baseline)은 MathML 태그 정보와 연산자이고, 여기에 다른 자질들을 추가하며 가장 높은 분류 성능을 가지는 자질을 찾는 방식으로 진행하였다. 학습은 지지벡터기기(Support Vector Machine: SVM)를 사용하였고 분류하고자 하는 단원은 '수학의 정석' 책을 토대로 총 12개(집합, 명제, 미분, 적분 등)로 나누었다. 실험을 통해 MathML 문서 안에서 가장 유용한 자질이 '식별자&연산자 바이그램'인 것을 알 수 있었고, 여러 가지 자질들을 조합하여 수학식을 분류한 결과 92.5%의 성능으로 분류하는 것을 확인할 수 있었다.
텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.
구문분석 말뭉치는 통계적 구문분석 분야의 필수적인 항목으로 많은 유용성을 가지지만, 말뭉치를 구축할 때 막대한 시간과 비용이 요구되기 때문에 구축자의 수작업을 감소시키는 방법에 대한 연구가 필요하다. 본 논문에서는 대량의 신뢰도 있는 구문분석 말뭉치를 구축하기 위해 신경망을 사용하는 반자동 구문 분석 말뭉치 구축도구에 대해서 설명한다. 개발된 도구는 구문패턴 추골, 신경망 학습, 반자동 구축의 세 단계로 구성된다. 구문패턴 추출 단계에서는 사용자가 정의한 자질집합을 사용하여 기존에 구축된 말뭉치에서 구문패턴들을 추출하고, 신경망 학습의 단계에서는 추출된 구문패턴들을 사용하여 신경망을 학습한다. 그리고, 반자동 구축 단계에서는 학습된 신경망을 사용하여 반자동으로 구문분석 말뭉치를 구축한다. 본 논문에서 제안하는 방법은 다양한 자질집합을 조합하여 사용할 수 있고, 학습을 사용하기 때문에 학습 집합에 나타나지 않은 경우에 대해서도 합리적인 결정을 내릴 수 있다. 소량의 구문분석 말뭉치를 대상으로 실험한 결과, 본 논문에서 제안하는 방법이 약 42.5%의 수작업 횟수 감소율을 보였음을 알 수 있었다.
본 논문에서는 질의응답시스템에서 응답 추출 대상 문서로 사용할 적절한 문서를 찾는 방법으로 기계 학습 기반의 문서 품질 평가 기법을 사용한다. 본 논문에서는 기존 연구와 달리 객관적인 정보를 많이 포함하고 있는 문서를 선별하는 목적으로 문서 품질 평가를 위한 유용한 자질들을 제안한다. 본 논문에서 정의한 정보성 자질은 정보의 양을 측정하는 자질과 정보의 객관성을 측정하는 자질로 구성된다. 실험 결과, 기존 문서 품질 평가 연구에서 주로 사용된 자질들만 사용한 경우와 새로운 자질들을 추가한 경우를 비교하였을 때, 1.5배 정도 높은 평균 정확률을 보였다. 제안하는 자질들 중에는 정보성 자질이 매우 유용한 자질이었고, 가독성 자질은 비교적 낮은 성능을 보였다. 문서의 여과 실험 결과, 96.4%의 재현율을 유지하면서 전체 문서 집합 중, 60%에 해당하는 저품질 문서를 여과할 수 있었다.
본 논문에서는 스팸메일에 나타나는 스팸성 자질과 URL 자질의 공동 학습을 이용한 최대엔트로피모델 기반 스팸 필터 시스템을 제안한다. 스팸성 자질은 스패머들이 스팸메일에 인위적으로 넣는 강조 패턴이나 필터 시스템을 통과하기 위해 비정상적으로 변형시킨 단어들을 말한다. 스팸성 자질 외에 반복적으로 나타나는 URL과 비정상적인 URL도 자질로 사용하였다. 메일에 나타난 정상적인 URL과 필터 시스템을 피하기 위해 변형된 비정상적인 URL들이 스팸 메일을 걸러내는데 도움을 줄 수 있기 때문이다. 또한 스팸성 자질과 URL자질을 이용한 공동 학습을 하였다. 공동 학습은 학습 과정에서 두 자질을 독립적으로 이용한 비지도 학습 방법으로 정답을 모르는 문서를 이용할 수 있다는 장점을 갖는다. 실험을 통해 스팸성 자질과 URL을 이용함으로써 스팸 필터 시스템의 성능을 향상시킬 수 있음을 확인하였으며 두 자질 집합을 이용한 공동 학습이 필요한 학습 문서의 수를 감소시키면서, 정확도는 일괄 학습 정확도에 근접한다는 것을 확인하였다.
본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.
블로그는 다양한 주제 분야에 대한 내용을 자유롭게 표현할 수 있는 일종의 개인 웹사이트로, 많은 양과 다양성으로 매우 중요한 정보원이 될 수 있다. 블로그는 생산속도가 매우 빠르므로 보다 고품질의 블로그를 선별하는 것이 중요하다. 본 논문에서는 블로그의 본문을 담고 있는 포스트를 대상으로 기계학습 기법을 이용하여 문서의 품질을 자동으로 평가하고자 하였다. 학습을 위한 자질로는 모든 블로그에 공통적으로 적용할 수 있도록 형태소 분석에서 추출한 동사, 부사, 형용사의 내용어만을 선택하였다. 성능 비교를 위해 수작업으로 약 4,600개의 정답 집합을 구축하고, 적합한 기계학습 기법을 찾기 위해 다양한 학습 기법을 사용하여 비교 실험하였다. 실험 결과 Bagging 기법의 성능이 79% F-measure로 가장 좋음을 보여주었다. 한정된 자질을 사용했을 때와 정답 집합의 문서 수 비율이 불균등할 경우 단순함, 유연성, 효율성의 특징을 지닌 Bagging 기법이 적합할 것으로 보인다.
최근에 한국어 의존 관계에 대한 파싱 시스템과 관련된 연구가 소프트웨어 공학자들이나 언어학자들에 의해 다양하게 연구되고 있으며, 시스템 구현은 주로 기계 학습이나 기호 주의를 사용하고 있다. 기계 학습을 사용한 방법은 한국어 문장 데이터가 매우 크기 때문에 시스템 특성상 매우 긴 학습시간을 가지며, 데이터 자체가 가지는 오류로 인하여 한정된 인식율을 가진다. 본 연구에서는 기계학습을 이용한 시스템에 대하여 학습 시간을 줄일 수 있도록 특징들을 자질 집합 모듈로 분할하여 처리하는 방법을 제안하고, 문장수와 반복횟수에 따른 인식율을 분석하였다. 설계된 시스템은 분리된 모듈과 이진 검색을 위한 정렬 기법이 사용되었다. 데이터는 세종 말뭉치로부터 추출한 후 정제된 36,090문장을 사용하였다. 학습 시간은 약 3시간으로 줄었으며, 인식율은 10,000 문장을 50회 학습하였을 때 84.54%로 가장 높았다. 모든 학습 문장(32,481)을 10회 학습하였을 때 인식율은 82.99%이다. 결과적으로 정제된 데이터를 이용하여 시스템이 안정화될 때까지 반복하는 것이 더 효율적이었다.
대표적인 앙상블 기법으로서 랜덤포레스트(RF)를 문헌정보학 분야의 학술지 논문에 대한 자동분류에 적용하였다. 특히, 국내 학술지 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 트리 수, 자질선정, 학습집합 크기 등 주요 요소들에 대한 다각적인 실험을 수행하였다. 이를 통해, 실제 환경의 불균형 데이터세트(imbalanced dataset)에 대하여 랜덤포레스트(RF)의 성능을 최적화할 수 있는 방안을 모색하였다. 결과적으로 국내 학술지 논문의 자동분류에서 랜덤포레스트(RF)는 트리 수 구간 100~1000(C)과 카이제곱통계량(CHI)으로 선정한 소규모의 자질집합(10%), 대부분의 학습집합(9~10년)을 사용하는 경우에 가장 좋은 분류 성능을 기대할 수 있는 것으로 나타났다.
본 논문에서는 TextRank 알고리즘을 이용한 문서 범주화 방법에 대해 기술한다. TextRank 알고리즘은 그래프 기반의 순위화 알고리즘이다. 문서에서 나타나는 각각의 단어를 노드로, 단어들 사이의 동시출현성을 이용하여 간선을 만들면 문서로부터 그래프를 생성할 수 있다. TextRank 알고리즘을 이용하여 생성된 그래프로부터 중요도가 높은 단어를 선택하고, 그 단어와 인접한 단어를 묶어 하나의 자질로 사용하여 문서 분류를 수행하였다. 동시출현 자질(인접한 단어 쌍)은 단어 하나가 갖는 의미를 보다 명확하게 만들어주므로 문서 분류에 좋은 자질로 사용될 수 있을 것이라 가정하였다. 문서 분류기로는 지지 벡터 기계, 베이지언 분류기, 최대 엔트로피 모델, k-NN 분류기 등을 사용하였다. 20 Newsgroups 문서 집합을 사용한 실험에서 모든 분류기에서 제안된 방법을 사용했을 때, 문서 분류 성능이 향상된 결과를 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.