• 제목/요약/키워드: 자질 집합

검색결과 65건 처리시간 0.022초

단어 중의성 해소를 위한 지도학습 방법의 통계적 자질선정에 관한 연구 (A Study on Statistical Feature Selection with Supervised Learning for Word Sense Disambiguation)

  • 이용구
    • 한국비블리아학회지
    • /
    • 제22권2호
    • /
    • pp.5-25
    • /
    • 2011
  • 이 연구는 지도학습 방법을 이용한 단어 중의성 해소가 최적의 성능을 가져오는 통계적 자질선정 방법과 다양한 문맥의 크기를 파악하고자 하였다. 실험집단인 한글 신문기사에 자질선정 기준으로 정보획득량, 카이제곱 통계량, 문헌빈도, 적합성 함수 등을 적용하였다. 실험 결과, 텍스트 범주화 기법과 같이 단어 중의성 해소에서도 자질선정 방법이 매우 유용한 수단이 됨을 알 수 있었다. 실험에 적용한 자질선중 기준 중에 정보획득량이 가장 좋은 성능을 보였다. SVM 분류기는 자질집합 크기와 문맥 크기가 클수록 더 좋은 성능을 보여 자질선정에 영향을 받지 않았다. 나이브 베이즈 분류기는 10% 정도의 자질집합 크기에서 가장 좋은 성능을 보였다. kNN의 경우 10% 이하의 자질에서 가장 좋은 성능을 보였다. 단어 중의성 해소를 위한 자질선정을 적용할 때 작은 자질집합 크기와 큰 문맥 크기를 조합하거나, 반대로 큰 자질집합 크기와 작은 문맥 크기를 조합하면 성능을 극대화 할 수 있다.

토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구 (A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning)

  • 육지희;송민
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.63-88
    • /
    • 2018
  • 본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.

특허 분류를 위한 효과적인 자질 선택 (Effective Feature Selection for Patent Classification)

  • 정하용;황금하;신사임;최기선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.670-672
    • /
    • 2005
  • 자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.

  • PDF

최대 엔트로피 기반 문서 분류기의 학습 (Text Categorization Based on the Maximum Entropy Principle)

  • 장정호;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.57-59
    • /
    • 1999
  • 본 논문에서는 최대 엔트로피 원리에 기반한 문서 분류기의 학습을 제안한다. 최대 엔트로피 기법은 자연언어 처리에서 언어 모델링(Language Modeling), 품사 태깅 (Part-of-Speech Tagging) 등에 널리 사용되는 방법중의 하나이다. 최대 엔트로피 모델의 효율성을 위해서는 자질 선정이 중요한데, 본 논문에서는 자질 집합의 선택을 위한 기준으로 chi-square test, log-likelihood ratio, information gain, mutual information 등의 방법을 이용하여 실험하고, 전체 후보 자질에 대한 실험 결과와 비교해 보았다. 데이터 집합으로는 Reuters-21578을 사용하였으며, 각 클래스에 대한 이진 분류 실험을 수행하였다.

  • PDF

시간자질을 이용한 다중 문서요약 (Multi-Document Summarization using Time Feature)

  • 임정민;강인수;배재학;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.898-900
    • /
    • 2004
  • 시간에 중속적인 문서집합에서 사람이 만든 요약문은 시간에 따른 중요 내용의 분포를 보여준다. 본 논문은 다중 문서에 시간 자질을 이용한 문서의 분류와 시간별 문서집합에서 핵심문장과 부가문장을 선별하고, 문장간의 계층적인 클러스터링을 통해서 중요 문장을 선별하는 방법을 제안한다. 동일한 주제를 갖는 문서집합에서 사랑이 선택한 중요 문장에 대해서 제안한 방법은 50% 정확률을 나타냈다.

  • PDF

음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기 (Bi-LSTM-CRF and Syllable Embedding for Automatic Spacing of Korean Sentences)

  • 이현영;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.605-607
    • /
    • 2018
  • 본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.

  • PDF

한중 자동 문서분류를 위한 최적 자질어 비교 (Comparison Between Optimal Features of Korean and Chinese for Text Classification)

  • 임미영;강신재
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.386-391
    • /
    • 2015
  • 본 논문에서는 한국어와 중국어의 언어학적인 특징을 고려하여 문서 자동분류 시스템의 성능을 높일 수 있는 최적의 자질어 단위를 제안한다. 언어 종속적 단위인 형태소 자질어와 언어 독립적 단위인 n-gram 자질어 그리고 이들을 조합한 복합 자질어 집합을 대상으로 각 언어의 인터넷 신문기사를 SVM으로 분류하는 실험을 수행하였다. 실험 결과, 한국어 문서분류에서는 bi-gram이 F1-measure 87.07%로 가장 좋은 분류 성능을 보였고, 중국어 문서분류에서는 'uni-gram 명사 동사 형용사 사자성어'의 복합 자질어 집합이 F1-measure 82.79%로 가장 좋은 성능을 보였다.

자질 집합 표현에 의한 자연언어 문법 규칙 기술 (A Feature Set Description of Grammar Rules for Natureal Languages)

  • 박성숙;한성국
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.419-425
    • /
    • 1994
  • 문법체계내의 문법규칙은 규칙의 기술양식에 의해 언어특성이 결정된다. 본 논문에서는 문법 체계의 규칙기술을 위한 새로운 자질 집합 기술 (feature set description)을 제안하고, 이를 기반으로 한 파라메터화된 문맥자유문법 (parametrized context-free grammar : PCFG)을 정의하여, 자연언어의 문법규칙을 구성하는 방법에 대하여 기술한다. 자질 집합 기술은 간결한 규칙체계를 유지하면서 강력한 생성능력을 갖는 문법체계를 구현할 수 있어, 자연언어 처리 시스템에 효과적으로 적용할 수 있음을 보였다.

  • PDF

평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출 (Relation Extraction based on Extended Composite Kernel using Flat Lexical Features)

  • 최성필;정창후;최윤수;맹성현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권8호
    • /
    • pp.642-652
    • /
    • 2009
  • 본 논문에서는 기존의 관계 추출 성능을 향상시키기 위해서 기존의 자질 기반 방법에서 추구하였던 개체 주변 문맥 다양성 정보의 추출 및 적용과 커널 기반 방법의 강점인 관계 인스턴스에 대한 구문 구조적 자질 정보의 통합 활용을 통한 확장된 혼합 커널을 제안한다. ACE RDC 코퍼스를 활용한 실험에서, 기존의 합성곱 구문 트리 커널 기반 혼합 커널을 기반으로 총 9 종류의 평면적 어휘 자질 집합을 정의하고 이를 적용함으로써 성능 향상에 기여하는 어휘 자질 유형을 파악할 수 있었으며, 적은 규모의 학습 집합으로도 현재 최고 수준의 성능에 필적하는 결과를 얻을 수 있었다. 결론적으로 관계 추출을 위한 세 가지 핵심 정보, 즉 개체 자질, 구문 구조적 자질, 주변 문맥 어휘 자질을 통합 적용하면 관계 추출의 성능을 향상시킬 수 있음을 알 수 있었다.

기계학습을 통한 디스크립터 자동부여에 관한 연구 (A Study on automatic assignment of descriptors using machine learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제23권1호
    • /
    • pp.279-299
    • /
    • 2006
  • 학술지 논문에 디스크립터를 자동부여하기 위하여 기계학습 기반의 접근법을 적용하였다. 정보학 분야의 핵심 학술지를 선정하여 지난 11년간 수록된 논문들을 대상으로 문헌집단을 구성하였고, 자질 선정과 학습집합의 크기에 따른 성능을 살펴보았다. 그 결과, 자질 선정에서는 카이제곱 통계량(CHI)과 고빈도 선호 자질 선정 기준들(COS, GSS, JAC)을 사용하여 자질을 축소한 다음, 지지벡터기계(SVM)로 학습한 결과가 가장 좋은 성능을 보였다. 학습집합의 크기에서는 지지벡터기계(SVM)와 투표형 퍼셉트론(VPT)의 경우에는 상당한 영향을 받지만 나이브 베이즈(NB)의 경우에는 거의 영향을 받지 않는 것으로 나타났다.