• Title/Summary/Keyword: 자질 인식

Search Result 230, Processing Time 0.029 seconds

How to Use Effective Dictionary Feature for Deep Learning based Named Entity Recognition (딥러닝 기반의 개체명 인식을 위한 효과적인 사전 자질 사용 방법)

  • Kim, Hong-Jin;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.293-296
    • /
    • 2019
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간과 같이 고유한 의미를 갖는 단어들을 찾아 개체명을 부착하는 기술이다. 최근 개체명 인식기는 형태소 단위나 음절 단위의 입력을 사용하는 연구가 주로 진행되고 있다. 그러나 형태소 단위 개체명 인식은 미등록어를 처리하지 못하는 문제점이 존재하고 음절 단위 개체명 인식은 단어의 의미를 제대로 반영하지 못하는 문제점이 존재한다. 본 논문에서는 이 문제점을 보완하기 위해 품사 정보를 활용한 음절 단위 개체명 인식기를 제안한다. 또한 개체명 인식 성능에 큰 영향을 미치는 개체명 사전 자질을 더 효과적으로 사용할 수 있는 방법을 제안하며 이 방법을 사용했을 때 기존의 방법보다 향상된 개체명 인식 성능(F1-score 0.8576)을 보였다.

  • PDF

Post Correction of Speech Recognition using Discourse Information (담화 정보를 이용한 음성 인식 후처리)

  • Kim, Ju-Hee;Kang, Sang-Woo;Seon, Choong-Nyoung;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.147-151
    • /
    • 2010
  • 본 연구는 대화 시스템에서 처리되는 사용자 발화의 의도 분석 기법과 담화 정보를 사용하여 음성 인식 결과로서의 인식 후보 문장들을 재순위하는 방법을 제안한다. 담화 정보는 사용자 발화의 의도 분석에 매우 중요한 자질로 사용되고 있기 때문에 음성 인식 결과들의 후보를 선택하는 문제에서도 담화 정보는 매우 중요한 자질로 사용될 수 있다. 음성 인식 결과의 후보 문장들을 모두 의도 분석 과정을 거치고 각각의 후보 의도들과 이전 담화 정보의 연관성을 이용하여 음성 인식 결과를 재순위화 한다. 실험을 통하여 재순위 과정을 수행한 결과 1순위 음성 인식 결과는 재순위 과정을 거치지 않는 결과에 비해 7.08%의 오류 감소율을 보였다.

  • PDF

KACTEIL-NER: Named Entity Recognizer Using Deep Learning and Ensemble Technique (KACTEIL-NER: 딥러닝과 앙상블 기법을 이용한 개체명 인식기)

  • Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.324-326
    • /
    • 2017
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.

  • PDF

KACTEIL-NER: Named Entity Recognizer Using Deep Learning and Ensemble Technique (KACTEIL-NER: 딥러닝과 앙상블 기법을 이용한 개체명 인식기)

  • Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.324-326
    • /
    • 2017
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.

  • PDF

Competition Relation Extraction based on Combining Machine Learning and Filtering (기계학습 및 필터링 방법을 결합한 경쟁관계 인식)

  • Lee, ChungHee;Seo, YoungHoon;Kim, HyunKi
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.367-378
    • /
    • 2015
  • This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.

Named Entity Recognition based on CRF reflecting relative weight (상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식)

  • Jeong, Jin-Wook
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

Performance Improvement of Chunking Using Cascaded Machine Learning Methods (다단계 기계학습 기법을 이용한 구묶음 성능향상)

  • Jeon, Kil-Ho;Seo, Hyeong-Won;Choi, Myung-Gil;Nam, Yoo-Rim;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.107-109
    • /
    • 2011
  • 기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.

  • PDF

Implementation of Feature-based Dialog System in Restaurant domain (레스토랑 영역에서의 자질기반 대화시스템 구현)

  • Yang, Hyeon-Seok;Kim, Dong-Joo;Seol, Yong-Soo;Jung, Sung-Hun;Kim, Han-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.425-428
    • /
    • 2011
  • 서비스 로봇과 펫 로봇 등 사람과 직접 상호작용하는 로봇기술의 필요성이 증가하고 있다. 대화시스템은 자연언어처리 기술을 활용하여 음성인식 기술과의 결합을 통해 현재 로봇에서 주로 사용되고 있는 버튼과 터치스크린 위주의 HRI(Human-Robot Interface)보다 자연스러운 HRI를 제공한다. 이러한 자연스러운 HRI를 수행할 수 있는 로봇을 구성하기 위해서는 로봇이 서비스를 제공할 실제 영역에 맞는 대화시스템의 연구가 필요하다. 본 논문에서는 자질사전, 단일화 문법(unification grammar), 대화 흐름도(dialogue flow diagram)를 사용한 레스토랑 영역의 자질기반(feature-based) 대화시스템을 제시한다. 자질 정보는 형태소, 시제, 어휘의 의미구조 등을 나타내며 화행(speech act) 결정에 사용하고 문장 자질과 구문 자질을 파서에서 활용한다. 자질기반 대화시스템을 통하여 레스토랑 영역에서 사용자 화행 이해 및 주문, 안내 등의 서비스를 성공적으로 수행할 수 있음을 보인다.

Performance Comparison of Recurrent Neural Networks and Conditional Random Fields in Biomedical Named Entity Recognition (의생명 분야의 개체명 인식에서 순환형 신경망과 조건적 임의 필드의 성능 비교)

  • Jo, Byeong-Cheol;Kim, Yu-Seop
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.321-323
    • /
    • 2016
  • 최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.

  • PDF

Title Named Entity Recognition based on Automatically Constructed Context Patterns and Entity Dictionary (자동 구축된 문맥 패턴과 개체명 사전에 기반한 제목 개체명 인식)

  • Lee, Joo-Young;Song, Young-In;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.40-45
    • /
    • 2004
  • 본 논문에서는 영화명, 도서명, 음악명 등의 제목 개체명 인식을 위한 새로운 방법에 대해 기술한다. 제목 개체명은 개체명 내부에 기존 MUC에서 분류한 인명, 지명, 기관명 등과 같은 일반적인 개체명과는 달리, 철자 자질 등 내부 자질을 사용하기 어려우며, 제목 개체명 부착 말뭉치가 없기 때문에 기존 연구에서 좋은 성능을 보인 방법들을 적용하기는 힘들다. 이러한 문제를 해결하기 위해 본 논문에서는 원시 말뭉치에서 자동으로 구축한 문맥 패턴 정보와 개체명 사전을 사용하여 제목 개체명을 인식하는 방법을 제안한다. 패턴과 제목 개체명 사전 구축을 위해, 사전 정보를 이용한 패턴 확장과 이렇게 구축된 패턴 정보를 사용한 사전 확장 단계를 반복 수행하여 문맥 패턴과 제목 개체명 사진을 점진적으로 증가시키는 방법을 사용하였으며, 이러한 정보가 제목 개체명 인식에 도움이 됨을 실험적으로 입증하였다.

  • PDF