• Title/Summary/Keyword: 자질조합

Search Result 32, Processing Time 0.023 seconds

Korean Parsing Model using Various Features of a Syntactic Object (문장성분의 다양한 자질을 이용한 한국어 구문분석 모델)

  • Park So-Young;Kim Soo-Hong;Rim Hae-Chang
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.743-748
    • /
    • 2004
  • In this paper, we propose a probabilistic Korean parsing model using a syntactic feature, a functional feature, a content feature, and a site feature of a syntactic object for effective syntactic disambiguation. It restricts grammar rules to binary-oriented form to deal with Korean properties such as variable word order and constituent ellipsis. In experiments, we analyze the parsing performance of each feature combination. Experimental results show that the combination of different features is preferred to the combination of similar features. Besides, it is remarkable that the function feature is more useful than the combination of the content feature and the size feature.

A Comparative Study on Feature Combination for MathML Formula Classification (MathML 수식 분류를 위한 자질 조합 비교 연구)

  • Kim, Shin-Il;Yang, Seon;Ko, Young-Joong
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.37-41
    • /
    • 2010
  • 본 논문에서는 Mathematical Markup Language(MathML) 형식으로 작성된 수학식 분류를 위해 필요한 자질과 성능 향상에 기여하는 자질 조합을 비교 평가한다. 이것은 MathML 형식의 수학식을 분석하기 위한 전처리 작업으로, 연산자의 모호성을 해소하기 위한 가장 기본적인 단계에 해당한다고 볼 수 있다. 실험에 사용되는 기본자질(Baseline)은 MathML 태그 정보와 연산자이고, 여기에 다른 자질들을 추가하며 가장 높은 분류 성능을 가지는 자질을 찾는 방식으로 진행하였다. 학습은 지지벡터기기(Support Vector Machine: SVM)를 사용하였고 분류하고자 하는 단원은 '수학의 정석' 책을 토대로 총 12개(집합, 명제, 미분, 적분 등)로 나누었다. 실험을 통해 MathML 문서 안에서 가장 유용한 자질이 '식별자&연산자 바이그램'인 것을 알 수 있었고, 여러 가지 자질들을 조합하여 수학식을 분류한 결과 92.5%의 성능으로 분류하는 것을 확인할 수 있었다.

  • PDF

A Study on Statistical Feature Selection with Supervised Learning for Word Sense Disambiguation (단어 중의성 해소를 위한 지도학습 방법의 통계적 자질선정에 관한 연구)

  • Lee, Yong-Gu
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.2
    • /
    • pp.5-25
    • /
    • 2011
  • This study aims to identify the most effective statistical feature selecting method and context window size for word sense disambiguation using supervised methods. In this study, features were selected by four different methods: information gain, document frequency, chi-square, and relevancy. The result of weight comparison showed that identifying the most appropriate features could improve word sense disambiguation performance. Information gain was the highest. SVM classifier was not affected by feature selection and showed better performance in a larger feature set and context size. Naive Bayes classifier was the best performance on 10 percent of feature set size. kNN classifier on under 10 percent of feature set size. When feature selection methods are applied to word sense disambiguation, combinations of a small set of features and larger context window size, or a large set of features and small context windows size can make best performance improvements.

A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification (한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구)

  • Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.681-691
    • /
    • 2008
  • In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF

Study of Feature Extraction Algorithm for Harmful word Filtering (유해어 필터링을 위한 자질어 추출 알고리즘에 관한 연구)

  • Jeong Jung-Hoon;Lee Won-Hee;Lee Shin-Won;An Don-Gun;Chung Sung-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.7-9
    • /
    • 2006
  • 유해 정보란 정보의 홍수 속에서 무차별적으로 제공되는 음란, 폭력 등의 내용을 담고 있는 정보를 말한다. 이러한 유해 정보들로부터 청소년 등 사회적으로 보호를 받아야 할 인터넷 이용자들을 보호하기 위한 장치가 필요하다. 현재 다양한 방법이 제안되고 연구되고 있다. 본 연구에서는 유해 문서의 필터링을 기법 중 키워드 필터링에서 사용되는 유해어 사전을 위한 자질어 추출 알고리즘에 대해서 비교/연구하였다. 키워드 필터링에서 자질어는 필터링의 성능에 많은 영향을 미친다. 따라서 필터링의 성능을 높이기 위한 자질어 추출 알고리즘 선택은 매우 중요하다. 이에 본 논문에서는 다양한 알고리즘을 비교 분석하여 정확하고 효율적인 자질어 추출 알고리즘 조합을 찾고자 하였다. 그 결과 CHI/TF-IDF 조합이 높은 성능을 보였으며 92%의 정확도를 얻을 수 있었다.

  • PDF

A Study on Feature Selection for kNN Classifier using Document Frequency and Collection Frequency (문헌빈도와 장서빈도를 이용한 kNN 분류기의 자질선정에 관한 연구)

  • Lee, Yong-Gu
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.1
    • /
    • pp.27-47
    • /
    • 2013
  • This study investigated the classification performance of a kNN classifier using the feature selection methods based on document frequency(DF) and collection frequency(CF). The results of the experiments, which used HKIB-20000 data, were as follows. First, the feature selection methods that used high-frequency terms and removed low-frequency terms by the CF criterion achieved better classification performance than those using the DF criterion. Second, neither DF nor CF methods performed well when low-frequency terms were selected first in the feature selection process. Last, combining CF and DF criteria did not result in better classification performance than using the single feature selection criterion of DF or CF.

Comparison Between Optimal Features of Korean and Chinese for Text Classification (한중 자동 문서분류를 위한 최적 자질어 비교)

  • Ren, Mei-Ying;Kang, Sinjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2015
  • This paper proposed the optimal attributes for text classification based on Korean and Chinese linguistic features. The experiments committed to discover which is the best feature among n-grams which is known as language independent, morphemes that have language dependency and some other feature sets consisted with n-grams and morphemes showed best results. This paper used SVM classifier and Internet news for text classification. As a result, bi-gram was the best feature in Korean text categorization with the highest F1-Measure of 87.07%, and for Chinese document classification, 'uni-gram+noun+verb+adjective+idiom', which is the combined feature set, showed the best performance with the highest F1-Measure of 82.79%.

Using CRF (Conditional Random Fields) to Predict Phrase Breaks in Korean (CRF를 이용한 한국어 운율 경계 추정)

  • Kim, Seung-Won;Kim, Byeong-Chang;Jeong, Min-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.134-138
    • /
    • 2005
  • 본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.

  • PDF