• 제목/요약/키워드: 자질어

검색결과 128건 처리시간 0.024초

한중 자동 문서분류를 위한 최적 자질어 비교 (Comparison Between Optimal Features of Korean and Chinese for Text Classification)

  • 임미영;강신재
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.386-391
    • /
    • 2015
  • 본 논문에서는 한국어와 중국어의 언어학적인 특징을 고려하여 문서 자동분류 시스템의 성능을 높일 수 있는 최적의 자질어 단위를 제안한다. 언어 종속적 단위인 형태소 자질어와 언어 독립적 단위인 n-gram 자질어 그리고 이들을 조합한 복합 자질어 집합을 대상으로 각 언어의 인터넷 신문기사를 SVM으로 분류하는 실험을 수행하였다. 실험 결과, 한국어 문서분류에서는 bi-gram이 F1-measure 87.07%로 가장 좋은 분류 성능을 보였고, 중국어 문서분류에서는 'uni-gram 명사 동사 형용사 사자성어'의 복합 자질어 집합이 F1-measure 82.79%로 가장 좋은 성능을 보였다.

유해어 필터링을 위한 자질어 추출 알고리즘에 관한 연구 (Study of Feature Extraction Algorithm for Harmful word Filtering)

  • 정정훈;이원휘;이신원;안동언;정성종
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.7-9
    • /
    • 2006
  • 유해 정보란 정보의 홍수 속에서 무차별적으로 제공되는 음란, 폭력 등의 내용을 담고 있는 정보를 말한다. 이러한 유해 정보들로부터 청소년 등 사회적으로 보호를 받아야 할 인터넷 이용자들을 보호하기 위한 장치가 필요하다. 현재 다양한 방법이 제안되고 연구되고 있다. 본 연구에서는 유해 문서의 필터링을 기법 중 키워드 필터링에서 사용되는 유해어 사전을 위한 자질어 추출 알고리즘에 대해서 비교/연구하였다. 키워드 필터링에서 자질어는 필터링의 성능에 많은 영향을 미친다. 따라서 필터링의 성능을 높이기 위한 자질어 추출 알고리즘 선택은 매우 중요하다. 이에 본 논문에서는 다양한 알고리즘을 비교 분석하여 정확하고 효율적인 자질어 추출 알고리즘 조합을 찾고자 하였다. 그 결과 CHI/TF-IDF 조합이 높은 성능을 보였으며 92%의 정확도를 얻을 수 있었다.

  • PDF

문서범주화 성능 향상을 위한 의미기반 자질확장에 관한 연구 (A Semantic-Based Feature Expansion Approach for Improving the Effectiveness of Text Categorization by Using WordNet)

  • 정은경
    • 정보관리학회지
    • /
    • 제26권3호
    • /
    • pp.261-278
    • /
    • 2009
  • 기계학습 기반 문서범주화 기법에 있어서 최적의 자질을 구성하는 것이 성능향상에 있어서 중요하다. 본 연구는 학술지 수록 논문의 필수적 구성요소인 저자 제공 키워드와 논문제목을 대상으로 자질확장에 관한 실험을 수행하였다. 자질확장은 기본적으로 선정된 자질에 기반하여 WordNet과 같은 의미기반 사전 도구를 활용하는 것이 일반적이다. 본 연구는 키워드와 논문제목을 대상으로 WordNet 동의어 관계 용어를 활용하여 자질확장을 수행하였으며, 실험 결과 문서범주화 성능이 자질확장을 적용하지 않은 결과와 비교하여 월등히 향상됨을 보여주었다. 이러한 성능향상에 긍정적인 영향을 미치는 요소로 파악된 것은 정제된 자질 기반 및 분류어 기준의 동의어 자질확장이다. 이때 용어의 중의성 해소 적용과 비적용 모두 성능향상에 영향을 미친 것으로 파악되었다. 본 연구의 결과로 키워드와 논문제목을 활용한 분류어 기준 동의어 자질 확장은 문서 범주화 성능향상에 긍정적인 요소라는 것을 제시하였다.

Modified ECCD 및 문서별 범주 가중치를 이용한 문서 분류 시스템 (A Document Classification System Using Modified ECCD and Category Weight for each Document)

  • 한정석;박상용;이수원
    • 정보처리학회논문지B
    • /
    • 제19B권4호
    • /
    • pp.237-242
    • /
    • 2012
  • 웹 문서 정보 서비스는 관리자의 효율적 문서관리와 사용자의 문서검색 편의성을 위해 문서 분류 시스템을 필요로 한다. 기존의 문서 분류 시스템은 분류하고자 하는 문서 내 선택된 자질어의 개수가 적거나, 특정 범주의 문서 비율이 높아 그 범주에서 대부분의 자질어가 선택되어 모델이 생성된 경우 분류 정확도가 저하되는 문제점을 가진다. 이러한 문제점을 해결하기 위해 본 논문에서는 'Modified ECCD' 기법 및 '문서별 범주 가중치' 특징 변수를 사용한 문서 분류 시스템을 제안한다. 실험 결과, 제안 방법인 'Modified ECCD' 기법이 ${\chi}^2$ 및 ECCD 기법에 비해 높은 분류 성능을 보였으며, '문서별 범주 가중치' 특징 변수를 'Modified ECCD' 기법으로 선택된 자질어 변수에 추가하여 학습하였을 경우에 더 높은 분류 성능을 보였다.

한국어 영형 대명사의 식별 알고리듬 (An algorithm for identification of zero pronouns in Korean)

  • 이춘숙;노용균
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.353-357
    • /
    • 1998
  • 이 논문은 대용어의 한 유형으로 인정되는 영형 대명사를 식별하기 위한 것이다. 이를 위해서는 한국어 통사 규칙들과 사전 항목들이 필요하다. 사전 항목들은 각각 자질과 값을 갖고, 통사 규칙 내부에는 이런 자질과 값들이 명세된다. 이 통사 규칙들을 토대로 하여, 발화체에 통사 구조들을 부여한다. 영형 대명사는 자질과 값을 명세한 통사 규칙을 씀으로써 식별이 가능하다. 영형 대명사는 주어와 보충어로 나뉘는데, 영형 주어는 동사가 머리인 S의 subj 자질 값이 cov(covert)일 때 식별된다. 영형 보충어는 다시 명사구와 동사구의 covc (covert complement) 자질 값이 0이 아닐 때 식별된다. 이러한 자질과 값으로 영형 대명사를 식별하는 하나의 알고리듬을 제안한다.

  • PDF

특수 문자 및 단어 빈도 비율을 이용한 스팸 필터링 방법 (A Spam Filtering Method using Frequency Distribution of Special Letter and Frequency Ratio of Keyword)

  • 이성진;백종법;한정석;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.280-283
    • /
    • 2011
  • 인터넷 환경에서 무차별적으로 유통되는 스팸 문서로 인한 사회적 문제가 커져 가고 있는 가운데 스팸문서를 차단하기 위한 활발한 연구들이 이루어지고 있다. 이 가운데 대표적인 연구는 자질어를 이용한 기계학습 기반의 스팸 차단 기술이다. 그러나 이 방법은 미리 선택된 자질어로만 구성된 분류 모델을 사용하기 때문에 Term Spamming(단어 조작에 의한 스팸 차단 행위)에 취약하며, 스팸 차단의 성능과 학습 소요 시간이 선택된 자질어의 품질과 수에 민감하게 영향을 받는다는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 스팸 문서에서 등장하는 특수 문자의 빈도와 반복되는 단어의 특징을 이용한 스팸 탐지 방법을 제안한다. 제안 방법은 각 문서에서 등장하는 특수 문자의 비율과 최다 출현 단어의 반복 패턴을 정의하고 기계학습 알고리즘을 적용하여 스팸 분류 모델을 생성한다. 제안 방법의 성능 평가를 위해 E-mail 데이터와 블로그의 Post 데이터를 사용하여 자질어 기반의 스팸 차단 방법과 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방법이 분류 정확도와 학습 소요 시간에 있어 우수한 성능을 보이는 것을 확인하였다.

인용문헌 표제를 이용한 문헌 클러스터링에 관한 연구 (Document Clustering Using Reference Titles)

  • 최상희
    • 정보관리학회지
    • /
    • 제27권2호
    • /
    • pp.241-252
    • /
    • 2010
  • 본 연구에서는 원문헌의 표제가 문헌클러스터링에서 문헌의 주제를 나타내는데 효과적인 자질로 인식되고 있지만 동의어나 유사어를 포함하여 문헌의 주제를 대표하는데 한계가 있음을 인지하고 인용문헌의 표제로 클러스터링 자질을 확대하는 방안을 제시하였다. 문헌 클러스터링의 자질로 원 문헌의 표제 용어와 인용문헌의 표제 용어, 두 종류의 표제 용어를 혼합하여 적용하여 인용문헌의 표제가 클러스터링 성능을 향상시키는 정도를 측정하였다. 각 자질별로 계층적 클러스터링 기법 3개, within group average linkage, complete linkage, Ward 기법을 결합하여 클러스터를 생성하는 성능을 비교, 분석하였는데 원문헌과 인용문헌 표제어를 혼합하여 within group average linkage 기법으로 클러스터링 한 경우가 가장 좋은 결과를 나타내었다.

유사어 사전을 이용한 자동범주화 모델 개발 (Automatic Text Categorization Model by Synonym Dictionary)

  • 김규환;이두영
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2004년도 제11회 학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2004
  • 기존의 문서분류는 학습문서에 출현하는 자질에 대해 가중치를 계산하여 그 순위에 따라 상위 자질로 구성된 지식베이스를 사용하였다. 그리고 새로운 문서가 들어왔을 때 자질 지식베이스를 근거로 새 문서를 색인하였다. 결국 자질 지식베이스와 정확히 일치하지 않는 키워드는 색인대상에서 제외되는 문제가 있었다. 본 고에서는 이 문제를 해결하기 위하여 분류될 문서의 특징을 나타내는 범주별 자질과 유사한의미를 가지나 형태가 변형되어 기술된 단어에 대하여 유사어 사전을 구축하였으며 이를 통해 새로운 문서가 범주에 할당될 가능성을 높여 자동 문서 범주화 시스템의 성능을 향상시키고자 한다.

  • PDF

감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가 (A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification)

  • 황재원;고영중
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • 본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.

  • PDF

문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출 (Sentence Cohesion & Subject driving Keywords Extraction for Document Classification)

  • 안희국;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF