• Title/Summary/Keyword: 자이델 수차

Search Result 5, Processing Time 0.018 seconds

Comparison of the Optical properties of Schematic Eyes by using the Seidel aberrations (자이델 수차를 이용한 모형안의 광학적 성능 비교)

  • Kim, Bong-Hwan;Lim, Hyeon-Seon;Ji, Taek-Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.269-280
    • /
    • 2004
  • For the studying of the optical property of the human eye by using the Seidel aberrations with schematic eyes, we have used the several paraxial and fine schematic eyes. In another world, after fixing the iris ot aperture pinhole on the anterior of lens, we investigated how the surface contributions and the surface asphericity affected the optical properties of schematic eyes by using the Seidel aberration coefficients variation. Also, by analysis of dividing both a relaxed state and the accommodation state of the eye, we investigated the change of the optical properties during the change of accommodation.

  • PDF

The Design and Evaluation of Optical Transmitter System For Long-Distance Wireless Optical Communication (장거리 무선 광통신용 송광렌즈계의 설계 및 평가)

  • 권영훈;김양식;김길선;임천석
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.128-129
    • /
    • 2003
  • 일반적으로 광학계를 설계하는 데 있어서 몇 가지 단계를 거치게 되는데, 이 중 최종설계의 성공여부를 좌우하는 가장 중요한 단계는 기초설계라 할 수 있다. 기초설계는 최적화에 필요한 초기데이터를 결정하는 것으로써, 현재 다양한 방법이 제안되어지고 있지만, 가장 체계적인 방법으로 생각되는 것은 자이델(Seidel) 3차 수차론을 활용하는 것이다. 자이델 3차 수차론으로부터 수차식들은 설계 변수들이 복합적으로 커플링된 고차방정식으로 표현이 되고, 이를 또한 해석적으로 표현되는 제한조건들과 함께 수치 해석적으로 풀면 기초설계에 필요한 여러 설계 변수들이 결정된다. (중략)

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Curvature Linear Equation of a Coma Corrected Two-Mirror System with Finite Object Distance (유한 물체거리를 갖는 코마수차가 보정된 2 반사경계의 곡률선형방정식)

  • Hwang, Seok-Ju;Rim, Cheon-Seog;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2007
  • We derived analytically the generalized curvature linear equation useful in the initial optical design of a two-mirror system with finite object distance, including an infinite object distance from paraxial ray tracing and Seidel third order aberration theory for coma coefficient. These aberration coefficients for finite object distance were described by the curvature, the inter-mirror distance, and the effective focal length. The analytical equations were solved by using a computer with a numerical analysis method. Two useful linear relationships, determined by the generalized curvature linear equations relating the curvatures of the two mirrors, for the cancellation of each aberration were shown in the numerical solutions satisfying the nearly zero condition ($<10^{-10}$) for each aberration coefficient. These equations can be utilized easily and efficiently at the step of initial optical design of a two-mirror system with finite object distance.