• Title/Summary/Keyword: 자유 횡동요 감쇠 시험

Search Result 4, Processing Time 0.017 seconds

Roll Damping Moment of a Small Fishing Vessel by Free Rolling Test in Calm Water (평수중 자유 횡동요 시험에 의한 소형어선의 횡동요 감쇠모멘트에 관한 연구)

  • H.H. Chun;S.H. Chun;S.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The roll damping characteristics of the three models of a 3 ton class fishing vessel such as the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll tests in calm water in a towing tank with the variations of the forward speed, initial angle and OG. The experimental results are compared with the numerical results of mathematical modellings by the energy method for these three models and the energy dissipation patterns are also compared.

  • PDF

Roll Damping Moment of a Small Fishing Vessel by Free Rolling Test in Waves (파랑중 자유 횡동요 시험에 의한 소형어선의 횡동요 감쇠모멘트에 관한 연구)

  • H.H. Chun;S.H. Chun;S.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.30-37
    • /
    • 2000
  • The roll damping characteristics of the three models of a 3ton class fishing vessel, that is the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll tests in head waves in a towing tank with the variations of the forward speed, initial angle and OG. The wave length variations are also included. The experimental results are compared with the numerical results of mathematical modellings by the energy method for these three models and the energy dissipation patterns are also compared. The roll damping speed increases, the effect of the waves on the roll damping of the models with the additional devices is negligible due to the much increased damping caused by the lift increase.

  • PDF

Experimental Study on Free Roll Decay Motions of a Damaged Ship for CFD Validation Database (CFD 검증용 데이터베이스 구축을 위한 손상 선박의 횡동요 감쇠 운동에 대한 실험적 연구)

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions in seaways is of utmost importance. Since the assessment of a damaged ship is complicated due to the highly non-linear behavior, it is widely acknowledged that computational fluid dynamics (CFD) methods are one of the most feasible approaches. Although many research activities are being reported on the damaged ship stability recently, most of them are not designed for validation of CFD studies. In this study, well-designed model tests were performed to build a CFD validation database, which is essential in developing better CFD methods for the damage stability assessment. The geometry of the damaged compartment and test conditions were determined based on preliminary CFD simulations. Free roll decay tests in calm water with both intact and damaged ships were performed and the roll motion characteristics were compared. The damaged ship showed a larger roll damping coefficient and more rapid decrease of roll amplitude than the intact ship. The primary reason of these efforts can be explained by the movement of the flooded water.

Experimental Study on Estimation of Roll Damping for Various Midship Sections (중앙 단면 형상에 따른 횡동요 감쇠 추정 실험 연구)

  • Park, Byeongwon;Jung, Dong Woo;Jung, Jaesag;Park, Inbo;Cho, Seok-Kyu;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.322-329
    • /
    • 2019
  • The magnitude of the roll motion of a floating structure depends on the roll damping acting on the body. In other words, the roll damping of a floating structure must be accurately obtained in order to precisely evaluate the roll motion. Various methods are used to evaluate the roll damping of a floating structure, such as the linear potential theory, computational fluid dynamics (CFD), and model tests. However, it is difficult to evaluate the roll motion of a floating structure with appendages such as a bilge keel and riser slot due to the limitation of ignoring the viscous effects in the linear potential theory. Among these methods, a model test based on a free decay test and harmonic excited roll motion (HERM) is known to be the most reliable method to estimate the roll damping of the floating structures. In this study, model tests using free decay and HERM techniques were performed in the Ocean Engineering Basin (OEB) of KRISO with various types of midship sections. The roll damping results were estimated based on post-processing methods using both techniques, and the roll damping results were compared.