• Title/Summary/Keyword: 자유후류

Search Result 77, Processing Time 0.027 seconds

Study on Low noise, High Performance Automobile Cooling Fan Development Using Freewake and CFD Analysis (자유후류법과 CFD 해석을 통한 저소음 고효율 자동차용 냉각팬 개발에 관한 연구)

  • ;;Renjing Cao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.847-847
    • /
    • 2004
  • Automobile cooling fans are operated with a radiator module. To design low noise, high performance cooling fan, radiator resistance should be considered in the design process. The system (radiator) resistance reduces axial velocity and increases effective angle of attack. This increasing effective angle of attack mechanism causes blade stall, performance decrease and noise increase. In this paper, To analyze fan performance, freewake and 3D CFD calculations are used To design high performance fan with consideration of system resistance, optimal twist concept is applied through momentum and blade element theory. To predict fan noise, empirical formula and acoustic analogy methods are used.

  • PDF

A Study on Wake Flow behind a pair of Circular Cylinders with gap (간격을 갖는 원주열의 후류특성에 관한 연구)

  • 김준호;최민선;조대환;이경우
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.135-139
    • /
    • 2001
  • This experimental study investigates the wake flow behind a pair of cylinders displaced normal to a free stream. In this experiment, the principal aim is to investigate the transition mechanism of the large vortex generating process in the wake having unique vortex shedding pattern. associated with the gap difference between the cylinders. The detailed visualization is carried out using the PIV measurement. The transition mechanism of the large generating vortex is clarified by showing the streak lines. the vorticity and the statistical fluctuating velocity distributions.

  • PDF

Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method (비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산)

  • Lee, Tae-Seung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1039-1048
    • /
    • 2008
  • new computational procedure for the Non-Linear Vortex Lattice Method (NLVLM) is suggested in this work. Conventional procedures suggested so far usually involves inner iteration loop to update free vortex shape and an under-relaxation based iteration loop to determine the free vortex shape. In this present work, we suggest a new formula based on quasi-steady concept to fix free vortex shape which eliminates the need for inner iteration loop. Further, the ensemble averaging of the induced velocities for a given free vortex segment evaluated at each iteration significantly improves the convergence property of the algorithm without resorting to the under-relaxation technique. Numerical experiments over several low aspect ratio wings are carried out to obtain optimal empirical parameters such as the length of the free vortex segment, the vortex core radius, and the rolled-up wake length.

An Experimental Investigation on the Flow Field around the Wing Having a Circular Damage Hole (원형 손상 구멍이 있는 날개 주위 유동장에 관한 실험적 연구)

  • Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.954-961
    • /
    • 2008
  • An experimental study has been conducted to investigate the flow field around the wing having a circular damage hole. The damage was represented by a circular hole passing through the model with 10% airfoil chord diameter and normal to the chord. The hole was centered at quarter or half chord. The PIV flow fields and static pressure measurements on the wing upper and lower surface were carried out at Rec=2.85×105 based on the chord length. The PIV results showed the two types of flow structures around a damage hole were formed. The first one was a weak jet that formed an attached wake behind the damage hole. The second one resulted from increased incidence; this was a strong jet where the flow through the hole penetrates into the free-stream resulting in extensive separation of oncoming boundary layer flow and development of a separated wake with reverse flow. The surface pressure data showed a big pressure alteration near the circular damage hole. The severity of pressure alteration was increased as a damage hole located nearer to the leading edge.

PIV Measurement of Viscous Flow Field in the Wake of Transom Stern (PIV기법을 이용한 트랜섬 선미 후류 점성유동장 계측)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.805-810
    • /
    • 2011
  • An experiment was carried out to figure out the instantaneous flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at $Re=3.5{\times}103$, $Re=7.0{\times}103$. The stern angles of models were learning at $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively based on the survey results of real ships. The depth of wetted surface is 40mm from free surface. As Reynolds number increases, vortices increase in volume and move their way to the downstream. Flow separation appeared at the end of model's bottom.

Unsteady Aerodynamic Analysis of an Air-Pressure-Levitated High-Speed Ground Vehicle (공압부양 고속 지상운송채의 비정상 공력해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.728-733
    • /
    • 2008
  • Unsteady aerodynamic analysis of an air-pressure-levitated high-speed ground vehicle moving over the nonplanar ground surface are performed using the boundary-element method. The potential flow solution is included in a time-stepping loop and the wake is captured as part of the solution. When the vehicle moving inside the channel, the lift coefficient and the pitching moment coefficient of the vehicle are increased further because the air trapped by the channel increases the ground effect. In other words, the nonplanar ground surface such as the channel decreases further the longitudinal stability of the vehicle. On the other hand, there is little difference between the ground and the channel in the lateral stability of the vehicle because the lift increment due to the nonplanar ground surface such as the channel takes place on both sides of the wing with the same rate of increase.

Development of a Ventilating Waterjet Propulsor for Super-High Speed Ships (초고속선을 위한 공기유입 물제트 추진기 개발)

  • J.T. Lee;I.S. Moon;Y.H. Park;K.Y. Kim;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.41-49
    • /
    • 1999
  • A feasibility study is performed for practical application of a Ventilating Water-Jet(VWJ) propulsor which attracts new attention as a candidate propulsor for super-high speed vessels. Super-cavitating foil sections are adopted for the rotor blades since the rotor is operating at ventilating condition. Wedge type and cavitator type foil sections are used for the design of rotor blades. Other geometric characteristics of rotors are selected from the Kaplan type ducted propeller rotors. The test section of KRISO cavitation tunnel is modified to perform open-water tests of the VWJ propulsors. The tests are performed both at fully-submerged and free-jet conditions. Ventilation occurred at the free-jet condition by sucking the air in the downstream side of the rotor, which easily develops as super-cavitation when the rotor operates at lower advance coefficients. Spoilers are attached at the trailing end of the pressure side of the blade section, in order to increase the lift force.

  • PDF

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.