• Title/Summary/Keyword: 자유아민

Search Result 13, Processing Time 0.02 seconds

Effects of Antioxidant and Thermal Treatment on the Radiation Resistance of Polypropylene (폴리프로필렌의 내방사선성에 미치는 산화방지제와 열처리의 영향)

  • Park Sung Hyun;Kim Hyung-Il;Kang Phil Hyun;Nho Young Chang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.10-13
    • /
    • 2006
  • The effects of antioxidants and thermal treatment on the radiation resistance of the gamma-ray irradiated polypropylene (PP) were studied. The PP was blended with various antioxidants and was fabricated into a sheet. The PP sheet was irradiated with gamma-ray to a dosage of 25kGy in the nitrogen atmosphere. The differences in both color and mechanical strength were investigated for the gamma-ray irradiated PP depending on the kind and the content of antioxidant. The residual amount of free radical and the variation of oxidation index were investigated for the gramma-ray irradiated PP with thermal treatment after irradiation. The PP having phosphite antioxidant showed little difference in color after gamma-ray irradiation compared with the PP having phenolic or mine antioxidant. Sufficient amount of free radical could be removed from the gamma-ray irradiated PP by the thermal treatment at $130\;^{\circ}C$ for 30 min. Thermally treated PP showed lower oxidation index than the PP without thermal treatment.

A Molecular Dynamics Simulation Study on Hygroelastic behavior of Thermosetting Epoxy (열경화성 에폭시 기지의 흡습탄성 거동에 관한 분자동역학 전산모사)

  • Kwon, Sunyong;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, hygroelastic behavior of thermosetting epoxy is predicted by molecular dynamics simulations. Since consistent exposures to humid environments lead to macroscopic degradation of polymer composite, computational simulation study of the hygroscopically aged epoxy cell is essential for long-time durability. Therefore, we modeled amorphous epoxy molecular unit cell structures at a crosslinking ratio of 30, 90% and with the moisture weight fraction of 0, 4 wt% respectively. Diglycidyl ether of bisphenol F (EPON862) and triethylenetetramine (TETA) are chosen as resin and curing agent respectively. Incorporating equilibrium and non-equilibrium ensemble simulation with a classical interatomic potential, various hygroelastic properties including diffusion coefficient of water, coefficient of moisture expansion (CME), stress-strain curve and elastic modulus are predicted. To establish the structural property relationship of pure epoxy, free volume and internal non-bond potential energy of epoxy are examined.

Enhancement of the Cosmeceutical Activity by Nano-encapsulation of Thiamine Di-lauryl Sulfate (TDS) with antimicrobial efficacy (항균 효능이 있는 비타민 B1 유도체(Thiamine Dilauryl Sulfate:TDS)의 나노입자화를 통한 기능성 향장 활성 증진)

  • Seo, Yong Chang;No, Ra Hwan;Kwon, Hee-Seok;Lee, Hyeon Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.205-213
    • /
    • 2013
  • This study was to improve cosmetical activity of thiamine di-lauryl sulfate (TDS) by encapsulation of nanoparticle with lecithin. Results showed that most of the nanoparticles containing the TDS were well formed in round shape with below 150 ~ 200 nm diameter as well as they were fairly stable in various pH ranges by measuring zeta potentials. The nanoparticles of TDS resulted in 85% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration (1.0 mg/mL). The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 88.1% in adding sample (1.0 mg/mL), compared to TDS solution of non-encapsulation (81.6%). The nanoparticles of TDS reduced the expression of MMP-1 on UV-irradiated CCD-986sk cells down to as 41.4%. The TDS solution and nanoparticles showed significant anti-microbial activities agaionst the salmonella typhimurium and listeria monocytogenes at 5 and 6 days as compared with control. Anti-microbial activities of TDS nanoparticles were similar to positive control. These results indicated that TDS nanoparticles may be a source for functional cosmetic agents capable of improving cosmetical activity such as antioxidant, whitening, and anti-wrinkling effects and can be further developed as natural preservative in cosmetics.