• Title/Summary/Keyword: 자원투입량

Search Result 162, Processing Time 0.027 seconds

Sustainable Production Strategy of Pine Mushroom (Tricholoma matsutake) using the Maximum Entropy Technique (최대 엔트로피 기법으로 도출한 지속 가능한 송이 생산 전략)

  • Choi, Junyeong;Koo, Ja-Choon;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.365-371
    • /
    • 2013
  • Pine mushroom (Tricholoma matsutake) is one of the most profitable forest products in Korea. We postulated a hypothesis that a high rate of returns to labor input could make the harvest of pine mushroom off the optimum level. In the view of developing a sustainable production strategy for pine mushroom producers, production of pine mushroom collectors and pine mushroom growth function were estimated using maximum entropy method. Annual pine mushroom production and labor input were the data used in the estimation of production function of pine mushroom collectors and pine mushroom growth function. The level of sustainable maximum production derived from the estimated function. The production function estimated shows that production of pine mushroom is affected more by the resource of pine mushroom stocked in the forests than by labor that households put in forestry business. The production function of mushroom collectors and the estimated growth function indicate that pine mushroom harvests for the period of 2005-2011 did not reach the potential level of maximum sustainable production. Therefore, we suggest that pine mushroom harvest should be controlled until the resource stock of pine mushroom in the forests increases to the level of maximum sustainable production.

The Optimization of Hydrometallurgical Process for Recovery of Zinc from Electric Arc Furnace Dust (Part I : leaching process) (습식산화법을 이용한 제강분진 내 아연회수를 위한 최적조건 도출에 관한 연구(Part I; 침출공정))

  • Moon, Dea-Hyun;Ahn, Sang-Woo;Kim, Han-lae;Kim, Ji-Tae;Chang, Soon-Woong
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • EAFD (Electric Arc Furnace Dust) is considered as pernicious pollutant, assigned hazardous waste. Since this dust is a by-product of industry, it contains valuable metals such as Fe, Zn, Ni, Cu which can be turned into resources by recycling process. In this study, hydrometallurgical process was applied to recover Zn from Electric Arc Furnace Dusts. The result showed 95% Zn recovery at 3M $H_2SO_4$, Solids/Liquid ratio 1:2 and aeration of 1.8L/min for 2hr. However there was 80% Zn recovery at lower $H_2SO_4$ concentration apply for pilot scale plant.

OECD 국가의 이산화탄소 배출량 분해분석

  • Kim, Gwang-Uk;Gang, Sang-Mok
    • Environmental and Resource Economics Review
    • /
    • v.21 no.2
    • /
    • pp.211-235
    • /
    • 2012
  • This paper presents an alternative decomposition technique to identify the relative importance of factors associated with changes in $CO_2$ emissions by using directional distance function to model the joint production of desirable and undesirable outputs. The key feature of the proposed approach is the introduction of fossil and non-fossil fuel energy input efficiencies, productivity change and emission intensity change. For the 27 OECD countries as a whole, the empirical results indicate that economic growth is the most important contributor to $CO_2$ emissions increase, while efficiency change is the most important component to $CO_2$ emissions reduction between 1980 and 2007. For more extensive insights, this paper divided 3 groups according to the emission growth rate and find out that high emission countries show relatively low production efficiencies and technical changes contributing $CO_2$ emissions increase. The results also provide that more strict environmental regulations are needed to improve the pollution intensity in these countries.

  • PDF

Development of Cost Data Prototype based on Production Crew by Productivity Analysis of Form Work (거푸집 공사의 생산성 분석을 통한 작업조 기반의 Cost Data Prototype 개발에 관한 연구)

  • Kang, Dong-Wan;Ji, Soung-Min;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.44-52
    • /
    • 2012
  • In the cost management of public construction projects, it is an important issue to develop an adequate cost data for estimating the predetermined amount by various methods. For a long time, a standard of estimation in korea is used as a basis for estimating the predetermined amount of public construction. However, they did not have a reasonable cost data based on a labor and equipment productivity analysis. For this reason, it is difficult to make a reasonable and efficient estimation of the costs, and this situation presents an urgent need for more accurate cost data to use in an early phase. This study analyzed the productivity of form work by the CYCLONE model, and presented the model on the number of optimal labor through sensitivity analysis. This CYCLONE model can be useful in analyzing productivity on the various sizes of form. Also, the regression model to estimate the daily output can be used in predicting the amount of labor. Considering the work duration in the regression model is expected to make the daily output estimation much more accurate.

Technical Efficiency, Scale Efficiency, Environmental Efficiency and the Analysis of the Decision Factors (기술효율, 환경효율, 규모효율과 그 결정요인 분석 -한국농가의 소득계층을 중심으로-)

  • Kang, Sang-Mok;Kim, Taesoo;Kim, Taegu;Lee, Dongmyong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.3
    • /
    • pp.595-626
    • /
    • 2005
  • The purpose of this paper is to estimate technical efficiency, scale efficiency, and environmental efficiency by income level of Korean farms, and analyze the factors to decide three efficiencies. Depending on the non-parametric methods, we estimate technical using inputs and outputs of total farms without assuming of goods or behavior of optimization. The average technical efficiency of total firms under constant return to scale and strong disposability is 0.437. The technical inefficiency was caused by 47.7% in pure technical inefficiency, 11.3% in scale failure, and 3.2% in environmental inefficiency. The number of firms under increasing return to scale occupied almost 70% and 27% of total firms respectively. Higher are income class, middle debt & long debt per asset, and N effluents per cultural land, higher technical efficiency. The increases of BOD discharges per cultural land and machines per cultural land deteriorate environmental efficiency.

  • PDF

Effect of Ultrasound Irradiation during Cementation Process for Recovery of Iridium (이리듐 회수를 위한 시멘테이션 공정 중 초음파 조사의 영향)

  • Kim, Seunghyun;Kim, Young-Jin;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.61-67
    • /
    • 2021
  • This work investigated the cementation of iridium from iridium-containing hydrochloric acid leachate. Zinc powder was used as the reducing agent, and the effects of the stoichiometric ratio of Zn/Ir, initial Ir concentration, initial pH, reaction time, and ultrasound irradiation on iridium recovery were investigated. When only the stirrer was used for cementation, the iridium recovery increased with the addition amount of zinc, and the recovery of about 70% at 40 times the stoichiometric ratio of Zn/Ir. In contrast, when employing ultrasonic irradiation with stirring, the recovery of iridium decreased at 20 times or less the stoichiometric amount of zinc. The recovery of iridium increased at 40 times the stoichiometric ratio of Zn/Ir. This result may be due to the ionization of zinc and re-dissolution of iridium during the ultrasound irradiation treatment. When a combination of ultrasonic irradiation and stirring was used for cementation, the iridium recovery increased by more than 27% compared to that when using only the stirrer. It was possible to recover 99% of iridium under the following conditions: reaction time, 60 min; initial pH, 0.01; volume of leachate, 100 mL; 1770 ppm Ir, 40 times the stoichiometric ratio of Zn/Ir.

Aggregation of Thin Copper Wire by Ball Milling Treatment (볼밀처리에 의한 구리세선의 응집)

  • Hwang, Jisu;Cho, Seong Su;Seong, Chang Jun;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2020
  • Recycling processes of spent copper wires cosisnt of several steps of cutting and chopping processes for peeling covering materials followed by gravity separation processes, where copper is recovered. Because copper thin wires could be lost during further recycling processes, the wire may need to be further treated. In the present study, the copper thin wire was treated with ball milling to prevent the loss. Since the aggregation of the copper wire could be formed by bending and entangling the copper wire each other, the degree of flexion of the copper wire was measured after ball milling. When the 0.5 cm and 3 cm copper wires were used, the 0.5 cm copper wire was not bent and the 3 cm copper wires were aggregated regardless of the ball addition. When the 1 cm and 2 cm copper wires were used, the degree of flexion was remarkable when the balls were added. In the tests using 2 cm copper wires, the aggregation ratio of the copper wire gradually increased with the amount of the 20 mm alumina ball, and when 200 ml of 30 mm alumina ball was used, the aggregation ratio increased to 89.29 %, but after increasing the ball amount further, the aggregation ratio decreased. Thus, it is expected that the loss of the copper wire could be reducedif when the copper thin wire is treated with ball milling by the aggregation of copper thin wires.

Environmental and Economic Impact of EV and FCEV Penetration into the Automobile Industry: A CGE Approach (전기 및 수소차 보급 확산의 환경적·경제적 영향분석: 계산가능일반균형모형(CGE)의 적용)

  • Han, Taek-Whan;Lim, Dongsoon;Kim, Jintae
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.231-276
    • /
    • 2019
  • This paper analyzed the impact of the penetration of EV(electric vehicle) and FCEV(fuel cell electric vehicle) into the automobile industry, using a static CGE approach. There are contrasting view on the economic impact of EV/FCEV penetration: negative economic impact due to shrunken intermediate inputs versus positive impact because of input saving technical progress. Regarding environment, there is no clear consensus whether EV or FCEV will contribute to the reduction of $CO_2$ emissions in Korea. This study attempts to provide an answer to these questions. By giving shocks to the input coefficients of automobile industries and automobile using sectors, as well as to the final demands for energies. we integrated the Bass diffusion model into the CGE framework, The result suggests that the EV penetration has adverse impact on the $CO_2$ emission while the FCEV penetration has positive impact. On the other hand, both EV and FCEV have positive impacts on GDP. When considering automobile manufacturing sectors only, adverse impacts on $CO_2$ are demonstrated both for EV and FCEV. However, since the size of $CO_2$ increase is small, these results does not alter the overall effects.

Transmissions of Toxic Substances and Trade between Korea and America : Using International Input-Output Analysis (한·미 국제무역에 따른 독성물질의 이전 : 국제산업연관분석의 응용)

  • Rhee, Hae-Chun
    • Environmental and Resource Economics Review
    • /
    • v.17 no.3
    • /
    • pp.31-59
    • /
    • 2008
  • This paper is intended to analyze the toxic substances transmission between South Korea and U.S. through international trade, based on 2000 international input-output data and both country's toxic substances. According to result, The high TEI sectors are metal, chemical and general machinery in Korea, and the high TEI sectors of America are electric & electronics, Chemicals, Rubber and Plastics. Korea's export structure to America is more pollutant than America's export structure to Korea.

  • PDF

Estimation of Resource Efficiency and Its Demand for Photovoltaic Systems Using the Life Cycle Assessment (LCA) Method (LCA기법을 활용한 태양광 시스템의 자원효율성 및 자원요구량 예측)

  • Lim, Ji-Ho;Hwang, Yong-Woo;Kim, Jun-Beum;Moon, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.464-471
    • /
    • 2013
  • In this study, the resource efficiency and future metal resource requirement in photovoltaic (PV) production system were evaluated by using material balance data and life cycle assesment (LCA) method. As a result, in the resource efficiency of ferrous and non-ferrous metal, lead and tin had higher resource efficiency than other materials in all PV systems (SC-Si, MC-Si, CI(G)S, CdTe). In the resource efficiency of rare metals, gallium and rhenium in silicon system and rhenium and rhodium in thin-film system ranked as the first and second high resource efficiency. In case of rare earth metal, gadolinium and samarium took higher resource efficiency. The results of the future metal resource requirement in PV systems showed that 2,545,670 ton of aluminium, 92,069 ton of zinc, 22,044 ton of copper, 1,695 ton of tin and 31 ton of nickel will be needed by 2030 in South Korea, except resource recycling supplement.