• Title/Summary/Keyword: 자원순환망

Search Result 26, Processing Time 0.024 seconds

Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model (순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측)

  • Lee, In-Gyu;Song, Mi-Hwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.391-398
    • /
    • 2021
  • Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.

SRN Hierarchical Modeling for Packet Retransmission and Channel Allocation in Wireless Networks (무선망에서 패킷 재전송과 채널할당 성능분석을 위한 SRN 계층 모델링)

  • 노철우
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.97-104
    • /
    • 2001
  • In this paper, we present a new hierarchical model for performance analysis of channel allocation and packet service protocol in wireless n network. The proposed hierarchical model consists of two parts : upper and lower layer models. The upper layer model is the structure state model representing the state of the channel allocation and call service. The lower layer model, which captures the performance of the system within a given structure state, is the wireless packet retransmission protocol model. These models are developed using SRN which is an modeling tool. SRN, an extension of stochastic Petri net, provides compact modeling facilities for system analysis. To get the performance index, appropriate reward rates are assigned to its SRN. Fixed point iteration is used to determine the model parameters that are not available directly as input. That is, the call service time of the upper model can be obtained by packet delay in the lower model, and the packet generation rates of the lower model come from call generation rates of the upper model.

  • PDF

Vulnerability Assessment of the Climate Change on the Water Environment of Juam Reservoir (기후변화에 따른 주암호 수환경 취약성 평가)

  • Yoon, Sung Wan;Chung, Se Woong;Park, Hyung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.519-519
    • /
    • 2015
  • 2007년 발간된 IPCC의 4차 평가보고서에서 자연재해, 환경, 해양, 농업, 생태계, 보건 등 다양한 부분에 미치는 기후변화의 영향에 대한 과학적 근거들이 제시되면서 기후변화는 현세기 범지구적인 화두로 대두되고 있다. 또한, 기후변화에 의한 지구 온난화는 대규모의 수문순환 과정에서의 변화들과 연관되어 담수자원은 기후변화에 대단히 취약하며 미래로 갈수록 악영향을 받을 것으로 6차 기술보고서에서 제시하고 있다. 특히 우리나라는 지구온난화가 전 지구적인 평균보다 급속하게 진행될 가능성이 높기 때문에 기후변화에 대한 담수자원 취약성이 더욱 클 것으로 예상된다. 따라서 지표수에 용수의존도가 높은 우리나라의 댐 저수지를 대상으로 기후변화에 따른 수환경 변화의 정확한 분석과 취약성 평가는 필수적이다. 본 연구에서는 SRES A1B 시나리오를 적용하여 기후변화가 주암호 저수지의 수환경 변화에 미치는 영향을 분석하였다. 지역스케일의 미래 기후시나리오 생산을 위해 인공신경망(Artificial Neural Network.,ANN)기법을 적용하여 예측인자(강우, 상대습도, 최고온도, 최저온도)에 대해 강우-유출모형에 적용이 가능한 지역스케일로 통계적 상세화를 수행하였으며, 이를 유역모델에 적용하여 저수지 유입부의 유출량 및 부하량을 예측하였다. 유역 모델의 결과를 토대로 저수지 운영모델에 저수지 유입부의 유출량을 적용하여 미래 기간의 방류량을 산정하였으며, 최종적으로 저수지 모델에 유입량, 유입부하량 및 방류량을 적용하여 저수지 내 오염 및 영양물질 순환 및 분포 예측을 통해서 기후변화가 저수지 수환경에 미치는 영향을 평가하였다. 기후변화 시나리오에 따른 상세기 후전망을 위해서 기후인자의 미래분석 기간은 (I)단계 구간(2011~2040년), (II)단계 구간(2041~2070년), (III) 단계 구간(2071~2100년)의 3개 구간으로 설정하여 수행하였으며, Baseline인 1991~2010년까지의 실측값과 모의 값을 비교하여 검증하였다. 강우량의 경우 Baseline 대비 미래로 갈수록 증가하는 것으로 전망되었으며, 2011년 대비 2100년에서 연강수량 6.4% 증가한 반면, 일최대강수량이 7.0% 증가하는 것으로 나타나 미래로 갈수록 집중호우의 발생가능성이 커질 것으로 예측되었다. 유역의 수문 수질변화 전망도 강수량 증가의 영향으로 주암댐으로 유입하는 총 유량이 Baseline 대비 증가 하였으며, 유사량 및 오염부하량도 증가하는 것으로 나타났다. 저수지 수환경 변화 예측결과 유입량이 증가함에 따라서 연평균 체류시간이 감소하였으며, 기온 및 유입수온 상승의 영향으로 (I)단계 구간대비 미래로 갈수록 상층 및 심층의 수온이 상승하는 것으로 나타났다. 연중 수온성층기간 역시 증가하는 것으로 나타났으며, 남조류는 (I)단계 구간 대비 (III)단계 구간으로 갈수록 출현시기가 빨라지며 농도 역시 증가하였다. 또한 풍수년, 평수년에 비해 갈수년에 남조류의 연평균농도 상승폭과 최고농도가 크게 나타나 미래로 갈수록 댐 유입량이 적은 해에 남조류로 인한 피해 발생 가능성이 높아질 것으로 예상된다.

  • PDF

Applying Transfer Learning to Improve the Performance of Deep Learning-based Groundwater Level Prediction Model with Insufficient Training Data (딥러닝 기반 지하수위 예측 모델 개발에 있어 데이터 부족 문제 해결을 위한 전이학습의 응용)

  • Jiho Jeong;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.551-562
    • /
    • 2024
  • Predicting groundwater levels with data-driven models like artificial neural networks typically requires a substantial amount of data. However, when groundwater monitoring wells are newly developed or when a significant portion of the data is invalid (for example, due to missing values or outliers), acquiring an adequate dataset for training prediction models becomes challenging, leading to diminished prediction accuracy. This study proposes a method based on transfer learning to address the issue of insufficient training data. The Gated Recurrent Unit (GRU) was used as the primary data-driven model for predictions. A GRU-based pretrained network for the transfer learning process was developed using groundwater level and corresponding rainfall data collected from 89 monitoring stations nationwide. Subsequently, this pretrained network was fine-tuned using a small amount of training data obtained from the target monitoring well to develop the final prediction model. To verify the effectiveness of the transfer learning algorithm, two different groundwater level prediction models were evaluated: 1) a GRU-based model trained with insufficient data from the target well, and 2) a GRU-based model utilizing the transfer learning algorithm. Comparative verification was conducted with groundwater level data obtained from wells at two different locations, where the model using the transfer learning algorithm demonstrated superior performance compared to the other. This study confirms that the transfer learning algorithm can significantly enhance the performance of groundwater level prediction models, irrespective of the amount of available training data.

Assesment of the industrial Wood Waste Disposal Cost through Analysis of the Treatment Flow (사업장계 폐목재의 흐름 분석을 통한 처리비용영향 검토)

  • Kim, Jaenam;Kim, Sujin;Phae, Chaegun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • This research has looked into the treatment process of wood waste generated from industrial waste within the region and in order to modify the problem that may occurred during the mass balance were analyzed for development of suitable solid waste recycling network regionally. As as result, quite amount of wood waste are being transferred to another region, even though a treatment facility's capacity could bear the total amount of waste generated within the area. Although the wood waste could be treated locally, it is analyzed that amount of wood waste are being transferred due to inefficient and irrational processing system between regions. It is assumed that $CO_2$ generated and loss of unnecessary fuel cost from these inefficient system is quite a lot and in order to modify this disorganized system, it will not inevitable to treat the waste based on the characteristics of each regions. Also, the wood waste recycling system should be studied with the efficient, environmental friendly processing and delivering network by minimized transfer distance and local systemizing the waste treatment system.

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.