KIPS Transactions on Software and Data Engineering
/
v.10
no.10
/
pp.391-398
/
2021
Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.
In this paper, we present a new hierarchical model for performance analysis of channel allocation and packet service protocol in wireless n network. The proposed hierarchical model consists of two parts : upper and lower layer models. The upper layer model is the structure state model representing the state of the channel allocation and call service. The lower layer model, which captures the performance of the system within a given structure state, is the wireless packet retransmission protocol model. These models are developed using SRN which is an modeling tool. SRN, an extension of stochastic Petri net, provides compact modeling facilities for system analysis. To get the performance index, appropriate reward rates are assigned to its SRN. Fixed point iteration is used to determine the model parameters that are not available directly as input. That is, the call service time of the upper model can be obtained by packet delay in the lower model, and the packet generation rates of the lower model come from call generation rates of the upper model.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.519-519
/
2015
2007년 발간된 IPCC의 4차 평가보고서에서 자연재해, 환경, 해양, 농업, 생태계, 보건 등 다양한 부분에 미치는 기후변화의 영향에 대한 과학적 근거들이 제시되면서 기후변화는 현세기 범지구적인 화두로 대두되고 있다. 또한, 기후변화에 의한 지구 온난화는 대규모의 수문순환 과정에서의 변화들과 연관되어 담수자원은 기후변화에 대단히 취약하며 미래로 갈수록 악영향을 받을 것으로 6차 기술보고서에서 제시하고 있다. 특히 우리나라는 지구온난화가 전 지구적인 평균보다 급속하게 진행될 가능성이 높기 때문에 기후변화에 대한 담수자원 취약성이 더욱 클 것으로 예상된다. 따라서 지표수에 용수의존도가 높은 우리나라의 댐 저수지를 대상으로 기후변화에 따른 수환경 변화의 정확한 분석과 취약성 평가는 필수적이다. 본 연구에서는 SRES A1B 시나리오를 적용하여 기후변화가 주암호 저수지의 수환경 변화에 미치는 영향을 분석하였다. 지역스케일의 미래 기후시나리오 생산을 위해 인공신경망(Artificial Neural Network.,ANN)기법을 적용하여 예측인자(강우, 상대습도, 최고온도, 최저온도)에 대해 강우-유출모형에 적용이 가능한 지역스케일로 통계적 상세화를 수행하였으며, 이를 유역모델에 적용하여 저수지 유입부의 유출량 및 부하량을 예측하였다. 유역 모델의 결과를 토대로 저수지 운영모델에 저수지 유입부의 유출량을 적용하여 미래 기간의 방류량을 산정하였으며, 최종적으로 저수지 모델에 유입량, 유입부하량 및 방류량을 적용하여 저수지 내 오염 및 영양물질 순환 및 분포 예측을 통해서 기후변화가 저수지 수환경에 미치는 영향을 평가하였다. 기후변화 시나리오에 따른 상세기 후전망을 위해서 기후인자의 미래분석 기간은 (I)단계 구간(2011~2040년), (II)단계 구간(2041~2070년), (III) 단계 구간(2071~2100년)의 3개 구간으로 설정하여 수행하였으며, Baseline인 1991~2010년까지의 실측값과 모의 값을 비교하여 검증하였다. 강우량의 경우 Baseline 대비 미래로 갈수록 증가하는 것으로 전망되었으며, 2011년 대비 2100년에서 연강수량 6.4% 증가한 반면, 일최대강수량이 7.0% 증가하는 것으로 나타나 미래로 갈수록 집중호우의 발생가능성이 커질 것으로 예측되었다. 유역의 수문 수질변화 전망도 강수량 증가의 영향으로 주암댐으로 유입하는 총 유량이 Baseline 대비 증가 하였으며, 유사량 및 오염부하량도 증가하는 것으로 나타났다. 저수지 수환경 변화 예측결과 유입량이 증가함에 따라서 연평균 체류시간이 감소하였으며, 기온 및 유입수온 상승의 영향으로 (I)단계 구간대비 미래로 갈수록 상층 및 심층의 수온이 상승하는 것으로 나타났다. 연중 수온성층기간 역시 증가하는 것으로 나타났으며, 남조류는 (I)단계 구간 대비 (III)단계 구간으로 갈수록 출현시기가 빨라지며 농도 역시 증가하였다. 또한 풍수년, 평수년에 비해 갈수년에 남조류의 연평균농도 상승폭과 최고농도가 크게 나타나 미래로 갈수록 댐 유입량이 적은 해에 남조류로 인한 피해 발생 가능성이 높아질 것으로 예상된다.
Predicting groundwater levels with data-driven models like artificial neural networks typically requires a substantial amount of data. However, when groundwater monitoring wells are newly developed or when a significant portion of the data is invalid (for example, due to missing values or outliers), acquiring an adequate dataset for training prediction models becomes challenging, leading to diminished prediction accuracy. This study proposes a method based on transfer learning to address the issue of insufficient training data. The Gated Recurrent Unit (GRU) was used as the primary data-driven model for predictions. A GRU-based pretrained network for the transfer learning process was developed using groundwater level and corresponding rainfall data collected from 89 monitoring stations nationwide. Subsequently, this pretrained network was fine-tuned using a small amount of training data obtained from the target monitoring well to develop the final prediction model. To verify the effectiveness of the transfer learning algorithm, two different groundwater level prediction models were evaluated: 1) a GRU-based model trained with insufficient data from the target well, and 2) a GRU-based model utilizing the transfer learning algorithm. Comparative verification was conducted with groundwater level data obtained from wells at two different locations, where the model using the transfer learning algorithm demonstrated superior performance compared to the other. This study confirms that the transfer learning algorithm can significantly enhance the performance of groundwater level prediction models, irrespective of the amount of available training data.
Journal of the Korea Organic Resources Recycling Association
/
v.20
no.3
/
pp.34-40
/
2012
This research has looked into the treatment process of wood waste generated from industrial waste within the region and in order to modify the problem that may occurred during the mass balance were analyzed for development of suitable solid waste recycling network regionally. As as result, quite amount of wood waste are being transferred to another region, even though a treatment facility's capacity could bear the total amount of waste generated within the area. Although the wood waste could be treated locally, it is analyzed that amount of wood waste are being transferred due to inefficient and irrational processing system between regions. It is assumed that $CO_2$ generated and loss of unnecessary fuel cost from these inefficient system is quite a lot and in order to modify this disorganized system, it will not inevitable to treat the waste based on the characteristics of each regions. Also, the wood waste recycling system should be studied with the efficient, environmental friendly processing and delivering network by minimized transfer distance and local systemizing the waste treatment system.
The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.