• Title/Summary/Keyword: 자원교환

Search Result 514, Processing Time 0.021 seconds

Effects of Solidago virga-aurea var. gigantea Miq. Root Extracts on the Activity and Differentiation of MC3T3- E1 Osteoblastic Cell (미역취(Solidago virga-aurea var. gigantea Miq.) 뿌리 추출물이 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Park, Jung-Hyun;Lee, Ji-Won;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.929-936
    • /
    • 2005
  • The purpose of this study was to examine the ability of alkaline phosphatase (ALP) synthesis of MC3T3-E1 cells when above edible sources, Solidago virga-aurea var. gigantea Miq. root (SVR) extracts, were supplimented. MC3T3-E1 cells were cultured with $\alpha-MEM$(vehicle control), dexamethasone and genestein (positive control), and SVR extracts for 27 days. The effects of SVR MeOH extracts and its fractions on cell proliferation were measured by MTT assay. At 10, 100${\mu}g/mL$ of SVR methanol extract treated, that were elevated of cell proliferation to 140 and $120\%$ via vehicle control, respectively. And then ALP synthesis was measured by spectrophotometer for enzyme activity and by naphthol AS-BI staining for morphometry at 3, 9, 18, and 27th day. As the results, every extracts and fractions were promoted ALP activity by time course at 1, 10, 100${\mu}g/mL$, except n-hexane and chloroform fractions. Remarkably, the MeOH extracts were increased ALP activity more than 4.4 times compared with vehicle control, 2.2 times via positive control at 27th day (p<0.05). The SVR MeOH extracts treated cells, especially at a concentration of 10${\mu}g/mL$, showed remarkably higher than vehicle-treated control cells of mineralization which were checked by Alizarin red staining. These results indicate that SVR methanol extract have an induction ability of proliferation and differentiation on osteoblast.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

A Review on Ocean Acidification and Factors Affecting It in Korean Waters (우리나라 주변 바다의 산성화 현황과 영향 요인 분석)

  • Kim, Tae-Wook;Kim, Dongseon;Park, Geun-Ha;Ko, Young Ho;Mo, Ahra
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.91-109
    • /
    • 2022
  • The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

Development of Tuna Purse Seine Fishery in Korea and the Countries Concerned (한국(韓國) 및 관련각국((關聯各國)의 다랑어 선망어업(旋網漁業) 발달과정(發達過程))

  • Hyun, Jong-Su;Lee, Byoung-Gee;Kim, Hyoung-Seok;Yae, Young-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.30-46
    • /
    • 1992
  • Korea's first exploratory tuna fishing was done with a used longliner in 1957. Then the commercial fishing has been made steady headway since the 1960's and grown up to one of major tuna fishing countries in 1970's. The tuna fishing aimed primarily at acquiring foreign currency, then tuna was exported directly from the overseas fishing base. Tuna, however, has been gradually favored by Koreans as high-proteined foods according to the growth of GNP since the 1970's. In 1980, the canned tuna began to be produced and sold at home. And so the demand of raw tuna for cannaries has steeply increased not only for home but also for abroad, and stimulated the development of tuna purse seine fishery. The author carried out a study on the development of tuna purse seine fishery in Korea and countries concerned-the United States and Japan-because it is recognized to be significant for the further development of this fishery. Just as purse seining was originated in the United States, so tuna purse seining was also pioneered by Californian fishermen in the west coastal waters of the United States (Eastern Pacific Ocean). They started to produce the canned tuna in the early 1900's, and the demand for raw tuna began to be increased rapidly. In those days, tuna was mostly caught by pole-and-line, but the catch amount was far away from the demand. To satisfy this demand, they began to try out fishing tuna by the use of purse seine which had been born in the eastern waters in the 1820's and applied to catch white fishes in the western waters of the United States in those days. Even though their trial was technically successful through severe trial and error, a new problem was raised on the management of tuna resource and the preservation of porpoise which was occassionally caught with tuna. Then the Inter-American Tropical Tuna Commission (IATTC) was established by countries neighboring to the United States in 1950 and they set up the Commission's Yellowfin Regulatory Area (CYRA) and regulated the annual quota for yellowfin. Then, American owners tried to send their seiners to the Western African waters to expand the fishing ground in 1967 and to the Centeral-Western Pacfic in 1974, and the fishing ground was widely expanded. The number of the United States' purse seiners amounted to about 150 in 1980, but the enthusiasm was gradually cooled thereafter and the number of seiner was decreased to 67 in 1986. The landing of tuna by purse seiners in the United States after 1980 maintains 200 thousands M/T or so with a little increase despite the decreasing of domestic seiners. This shows that the landing by foreign seiners are increasing, compared with the landing by domestic seiners are decreasing. In Japan, even though purse seining was introduced in 1880, they had fished tuna by longline and pole-and -line until the tuna purse seining was introduced from the United States again. In the 1960's, Japanese tuna seiners made the exploratory fishing in the South-western Pacific and West African waters with a limited success. In 1971, the government-funded research center "JARMRAC" conducted the exploratory fishing which extended to the Central American waters, the Asia-Pacific Region and the South-western Pacific. It had also much difficulties, till they improved the fishing gear adaptable to the new fishing condition in the South-western Pacific. Japanese government has begun to licence 32 single seiners and 7 group seiners since 1980 and their standard has lasted up to now. The catch in the Pacific Islands Region amounted to 160 thousands M/T in 1986. Korea's tuna purse seine fishery was originated in 1971 by Jedong Industrial Co., Ltd. with three used tuna purse seiners purchased from the United States, and they began to fish in the Eastern Pacific, but failed owing to the superannuation of vessel and the infancy of fishing technique. The second challenge was done by Dongwon Industrial Co., Ltd. in 1979, with one used seiner purchased from the United States, and started to fish in the Eastern Pacific. Even though the first trial was almost unsuccessful but they could obtain the noticeable success by removing the vessel to the South-western Pacific in 1980. This success stimulated the Korean entherprisers to take part in this fishery, and the number of Korean tuna purse seiners has been increased rapidly in accordance with the increased demand for raw tuna. The number of vessels actually at work amounted to 36 in 1990 and they operate in the South-western Pacific. The annual catch of tuna by purse seiners amounted to 170 thousands M/T in 1990 and ranked to one of the major tuna purse seining countries in the world.

  • PDF