• Title/Summary/Keyword: 자외선/과산화수소 공정

Search Result 10, Processing Time 0.025 seconds

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor (수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출)

  • Kim, Seonbaek;Kwon, Minhwan;Yoon, Yeojoon;Jung, Youmi;Hwang, Tae-Mun;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.534-541
    • /
    • 2014
  • This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

Removal of pharmaceuticals in biologically treated sewage with $O_3$ and advanced oxidation processes (오존 및 고도산화처리에 의한 하수 2차 처리수중의 의약품류 제거)

  • Kim, Il-Ho;Tanaka, Hiroaki;Song, Ho-Myeon;Joo, Jin-Chul;Ahn, Chang-Hyuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.137-137
    • /
    • 2011
  • 급격한 세계인구의 증가에 의해 물 부족지역이 세계 각지로 확산되고 있다. 이에 따라, 건전한 수자원으로써 하수처리수의 재이용이 주목을 받고 있다. 하수처리수의 재이용시에는 특히, 재이용수의 미생물학적 안전성과 더불어 화학물질 등으로부터 기인할 수 있는 인체 및 생태계에의 리스크를 고려해야 한다. 미국 EPA는 병원성 미생물 뿐만 아니라 화학물질에 대한 안전성을 확보 차원에자외선/과산화수소 등의 고도산화처리법을 검토하였다. 1일 $10m^3$ 처리규모의 연속실험장치를 이용, 검토된 공정별 실제 하수 2차 처리수중에 존재하는 의약품류의 제거효과, 에너지 소비량 및 생태리스크 저감효과 등을 비교, 평가하였다. 에너지 소비량에 있어서는 공정별로 다소 차이가 있었으나, 본 실험동안 검출된 38종의 의약품류 제거에는 각 공정 모두 매우 효과적이었다. 에너지 소비측면에서는 오존 단독공정이 가장 적은 에너지 소비량에서 타 공정과 동일한 수준의 의약품류 서 막처리나 자외선 처리 등의 고도처리시설에 대한 정보를 재이용수 가이드라인에 제시하고 있는 반면, 우리나라에서는 재이용수중에 일정농도 이상의 염소가 잔류하도록 함으로써, 재이용수의 미생물학적 안전성 확보만을 고려하고 있다. 최근, 수환경분야에서는 의약품류라는 화학물질이 유럽, 미국 및 일본 등지를 중심으로 주목을 받아오고 있으며, 이들은 ng/L-${\mu}g$/L 수준으로 수환경중에서 검출되고 있다. 이들의 주요 발생원으로 하수처리시설이 지목되고 있으며, 따라서 하수처리수의 재이용시 잔류 의약품류에 의한 리스크 발생 가능성이 우려되고 있다. 이를 배경으로, 하수처리시설에서 의약품류를 효과적으로 제거할 수 있는 공정으로 오존 및 오존/자외선, 제거효과가 얻어졌다. 한편, 오존처리시 발암성 물질인 브로메이트($BrO_3^-$) 등과 같은 부생성물 생성 가능성을 고려하면, 오존 단독공정보다 상대적으로 많은 에너지를 소비하는 오존/자외선, 자외선/과산화수소 등의 고도산화처리법이 높은 적용성을 갖는 것으로 나타났다. 향후, 수자원 부족문제로 재이용수의 용도가 훨씬 다양해 질 것으로 예상된다. 그에 따라, 재이용수의 안전성 확보를 위해 보다 폭넓은 검토가 예상되지만, 현 단계에서는 오존을 포함, 다소 많은 에너지 소비가 예상되는 자외선을 이용한 고도산화처리법이 다양한 미량 화학물질의 제거에 유효한 공정으로 판단된다.

  • PDF

Advanced Treatment of Piggery Slurry Using Micro Ozone Bubble, UV, Ultra Sonic and Hydroxy Peroxide (미세기포화 오존과 자외선, 초음파, 과산화수소를 이용한 돈분뇨 슬러리 고도처리)

  • Jeong, K.H.;Kim, J.H.;Kwag, J.H.;Jeong, M.S.;Lee, K.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • The aim of this study was to investigate the removal effects of the color, nutritive salts and other pollutants on piggery slurry by advanced oxidation process (AOP) system. The experimental AOP system was designed to treat 300 L of piggery slurry per hour. To enhance oxidizing power of the experimental APO system, a ultraviolet irradiation system and the ultrasonic system were attached to the AOP system. With 5 min ultrasonic treatment, COD, SS and T-N concentrations were changed from 210, 820, and 309 to 200, 760, and 262 mg/L, respectively. With 10 min ultrasonic treatment, SS and T-N concentrations tended to decrease but T-P concentration was not changed. With the treatment of both ozone and ultrasonic waves for 30 min, COD, SS, T-N and T-P decreased from 238, 900, 400, and 5 to 165, 540, 263, and 4 mg/L, respectively. With the treatment of both ozone and ultraviolet irradiation for 30 min, COD, SS, T-N and T-P decreased from 321, 340, 204, and 15 to 151, 140, 111, and 7 mg/L, respectively, and color was changed from 4,344 to 624.

  • PDF

UV/H2O2 Oxidation for Treatment of Organic Compound-spilled Water (UV/H2O2 산화를 활용한 유기오염물질 유출수 처리용 공정 연구)

  • Kim, Nahee;Lee, Sangbin;Park, Gunn;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, we investigated the UV/H2O2 process to treat organic compound-spilled water. In consideration of usage and properties, benzene, toluene, phenol, and methyl ethyl ketone were selected as representative organic compounds. The selected material was first removed by natural volatilization and aeration that simulated the pretreatment of the prcoess. After that, UV/H2O2 oxidation experiments were conducted under various H2O2 concentration conditions. Benzene and toluene were mostly volatilized before reaching the oxidation process due to high volatility. Considering the volatility, oxidation experiments were performed at an initial concentration of 5 mg/L for benzene and toluene. The UV/H2O2 oxidation process achieved 100% of benzene and toluene removal after 20 minutes under all hydrogen peroxide concentration conditions. The phenol was rarely removed from the volatile experiments and oxidation tests were performed at an initial concentration of 50 mg/L. The process showed 100 % phenol removal after 30 minutes under 0.12 v/v% of hydrogen peroxide concentration condition. Methyl ethyl ketone was removed 58 % after 2 hours of volatile experiments. The process showed 99.7% Methyl ethyl ketone removal after 40 minutes under 0.08 v/v% of hydrogen peroxide concentration condition. It was confirmed that the UV/H2O2 process showed high decomposition efficiency for the four selected organic compounds, and identified the amount of hydrogen peroxide in classified organic contaminants.

Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis (과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구)

  • Lee, Jae-Hwa;Kim, Bong-Jun;Jeon, Soo-Bin;Cho, Joon-Hyung;Kang, Min-Kyoung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • Air pollution associated with the $NO_x$ emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on $H_2O_2$ is suggested and the $H_2O_2$ decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of $H_2O_2$ photolysis reaction. As a result, the optimum quantum yield and photolysis rate of $H_2O_2$ were 0.8798, $0.6mol\;h^{-1}$ at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.

The Treatment Properties of Heavy Metals in Acid Mine Drainage with Micro-bubble and UV/H2O2 Oxidation Process (마이크로버블과 자외선/과산화수소 산화공정을 이용한 광산배수의 중금속 처리 특성)

  • Jung, Yong-Jun;Jung, Jae-Ouk
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.303-309
    • /
    • 2017
  • Aeration with low energy micro-bubble generation and $UV/H_2O_2$ processes was introduced to verify the possibility of oxidation treatment for acid mine drainage. During 10 hours of aeration with micro-bubbles, Fe and As concentrations were decreased to 18.1 and 61.8%, respectively, while Cu, Cd, Al were kept at influent concentrations. Other heavy metals such as Mn, Cr, Pb, Zn, and Ni concentrations fluctuated due to the repetition of oxidation and release. Twenty days of aeration indicated the oxidation possibility for Cu, Cd, and Al. With the employment of $UV/H_2O_2$ processes, more than 77% of Cu and Fe removed, whereas slightly more than 30% of Cd and Al removed.

Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide (과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

Removal of Total Organic Carbon and Micropollutants in Tertiary Treated Sewage by Medium Pressure UV/H2O2 (중압 자외선과 과산화수소 공정을 이용한 하수 3차 처리수중 총유기탄소와 미량오염물질 제거)

  • Lee, Jai-Yeop;Kim, Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • This study evaluated the applicability of UV-AOP process using medium-pressure UV lamp and H2O2 to remove TOC and emerging micropollutants in the effluent from a sewage treatment plant. The UV lamp with higher output(1.6~8.0 kW) showed slightly higher amount of power in removing TOC of 1 mg/L(0.09 kWh/mg/L~0.11 kWh/mg/L), however it was found that there was no significant difference for each cases. In addition, under the condition that the H2O2 concentration is sufficient, as the power consumption of the UV lamp increases, the unit TOC removal concentration per unit H2O2 decomposition concentration also increases, resulting in effective removal of TOC. The removal rate of 7 new trace contaminants, such as antibiotics by the UV-AOP tested, was at least 89.4%, and the ability to remove the emerging micro pollutants in the process was very effective. But, it was judged that it could not be excluded that the probablity of transforming to oxidated by-product in the case of a low TOC removal efficiency. Depending on the operating conditions of the UV and H2O2 processes, a higher BOD concentration is found in the treated water than in the influent, and it is necessary to review the UV power and proper injection conditions of H2O2 to maintain the BOD concentration increase below a certain level.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.