• Title/Summary/Keyword: 자연형 태양열 시스템

Search Result 31, Processing Time 0.03 seconds

Application of Passive Solar Systems for Office Buildings (사무소 건물을 위한 자연형 태양열 시스템의 응용)

  • Park, Jin-Seo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • This study analyzed the performance of passive solar system for office building. A unit model of the passive solar system was proposed in order to predict its performance under varying parameters and Seoul weather date. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the passive solar system performance of office building was determined by the insolation and the outdoor air temperature. Also the passive solar system indicate 6.7~16.2% of annual average efficiency. In the comparison with other systems of the conventional wall, mass wall could reduce the heating loads of 7.1% and trombe wall could reduce heating loads of 11.5%. Through this study, performance of passive solar system for office building was verified by numerical method. Consequently, the passive solar system could operate an important role as the alternative for saving energy consumption of office building, and the additional studies should be made through the experimental method for the commercialization.

An Experimental and Field Study on Thermal Performance of Thermosyphon Solar Hot Water System (자연대류형 태양열 온수 급탕 시스템의 열성능 및 실증실험)

  • Kang, Y.H.;Kwak, H.Y.;Jeon, H.S.
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.16-26
    • /
    • 1991
  • This paper studies development of a solar thermosyphon hot water system which is suitable to korean climate and life style, to save energy consumed for domestic water heating. The system consists of two flat plate collectors(or three flat plate collectors) connected in parallel and a storage tank of 300 liter capacity with heat exchanger and the optimum system was designed through the comparative measurements of five different storage tanks. The developed system manufactured with domestic materials were installed in residential buildings in seven cities(Seoul, Pusan, Taegu, Kwangju, Taejeon, Kangneung, Cheju) for demonstration and field test and results show possibility for commercialization.

  • PDF

Thermal Performance Analysis and Optimization of Two-dimensional Trombe Wall Solar System (2차원 축열벽형 태양열시스템의 열성능해석 및 최적화)

  • 이원근;유성연;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1609-1620
    • /
    • 1993
  • A Study on the trombe wall system, a kind of passive solar systems, has been performed numerically. The system is treated as a two-dimensional steady turbulent natural convection including constant heat source per unit area. The numerical code, "PHOENICS, " was employed to analyze this conduction-convection conjugated heat transfer. The general mode of the flow field was examined, and the exchange of mass between two recirculating flows is found to be the major mechanism of the heat transfer. It is shown that the performance is affected by the changes in the geometrical factors-the thickness of the wall, the width between the windowand the wall, and size of the vents. Further analysis has been performed to show the optimal geometry with regard to the last two factors.o factors.

Application of the PSTAR Method to a Thermally Massive Passive Solar House (PSTAR기법을 이용한 자연형 주택의 열 성능 연구)

  • Jeon, Hong-Seok;Chun, Won-Gee
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1991
  • This paper reports the application of the PSTAR(Primary and Secondary Terms Analysis and Henormalization) method to a thermally massive passive solar house located in Daejeon, Korea. The house has approximately $156m^2$ of living area with 3 bedrooms and a living room, which embodies many passive solar features for energy conservation. The primary concern of this work was to properly evaluate the thermal behavior of a thermally massive building structure using the PSTAR method. Results show close agreements between the measured and renormalized values in most cases in which the simulation results from the audit description of the house deviate somewhat considerably.

  • PDF

Development of Software Program for the Design of Passive Solar Systems (자연형(自然型) 태양열(太陽熱)시스템의 적정화(滴定化) 설계(設計)에 관(關)한 연구(硏究))

  • Kang, D.H.;Auh, P.C.M.;Lim, S.H.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.70-76
    • /
    • 1985
  • The study aims at providing the methodology for planning and designing of passive solar systems. The computer softwares for the optimization of passive solar systems and insulation level of passive solar houses are developed. The computer software package was generated for various residential buildings under Korean weather condition.

  • PDF

Freeze Protection for Passive Solar Water Heating System in Bitter Cold Areas (혹한기 지역에서의 자연순환형 태양열 시스템 동파방지)

  • Kwon, Jae-Wook;Kim, Jong-Hyun;Hong, Hi-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.41-46
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and excessive electric power consumption. In the experimental device, hot water in a storage tank was circulated by a small pump and used to heat the outdoor pipes if the cold water pipe surface temperature falls lower than a set point. As a result, It was observed that there was no hot water waste while the solar water heating system operated without freeze and burst.

A Study on Thermal Characteristics of Hybrid Solar Receiver for Dish Concentrating System (고온용 태양열 복합 흡수기의 열특성 분석 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.571-575
    • /
    • 2006
  • To improve economic of solar power generation, stirling engine is required continuous operation and the receiver has to be provided with an additional combustion system. The hybrid receiver with a specially adapted combustion system is possible to 24 hr/day operation by solar and gas-fired. The inner cavity and external wall serve as absorber surfaces using collected irradiation and heat transfer surfaces for the gas heat flow, respectively. The hybrid receiver was designed and fabricated for the dish/stirling system. The analytical method for pridicting natural convective heat loss from receiver is used. The Koenig and Marvin model is used to estimate convection heat loss and heat transfer coefficiency.

  • PDF

Thermal Performance Evaluation on Direct and Indirect Solar Thermosyphon System (직접 및 간접식 자연순환형 태양열 온수급탕시스템의 열적성능 해석)

  • Jeon, H.S.;Auh, P.C.M.;Chun, W.G.;Kang, Y.H.
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.74-81
    • /
    • 1988
  • A preliminary study has been done to investigate the thermal performance of an indirect system. Direct systems are also analyzed and the results are compared with those of the indirect system where possible. Values from the numerical simulation show very good agreement with the measured data. Although the indirect system is generally expensive and not as efficient as direct systems, it is more reliable in frigid weather conditions like the winters in Korea.

  • PDF

Experiment on measures of heat collection for passive solar water wall systems that provide heat storage and natural lighting control (축열과 채광조절을 겸한 자연형 태양열 수벽시스템의 집열방식별 성능실험)

  • Oh, Young-hoon;Choi, Ji-eun;Lee, Chul-sung;Yoon, Jong-ho
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • Purpose: This preliminary study investigated a potential of the water wall systems that provide heat storage and natural lighting control simultaneously. Method: In order for transparency of the water wall to be controlled, the study first proposed two measures: to adjust transparency of the water wall; to control transparency of water wall surface. The performance of two measures then was verified and compared by experiments. In addition, a trade-off between heat collect and heat storage resulting from using additive for adjusting transparency was investigated. Result: The experiment showed that the two measures are similar in performance. The investigation of trade-off relation showed the additive should have the same heat storage as the water to prevent decrease in thermal performance of the water wall. As an economical measure to control transparency of the water wall, this study suggested a measure of secondary heat transfer systems using shading device that first absorbs solar radiation and then transfers heat to the water wall. The experiment show that performance of the proposed measure is similar to controlling transparency of water wall surface. In conclusion, it is expected that the performance of the water wall can be economically maximized by using the proposed mean in terms of heating, cooling and lighting energy saving.

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.