• Title/Summary/Keyword: 자연잔류자화

Search Result 4, Processing Time 0.029 seconds

Application of Dates of Terrestrial Magnetism to Archaeological Remains - Centered on a Charcoal Kiln with Side Window at Maegokdong, Ulsan - (고고유적에 대한 고고지자기연대법의 적용 - 울산 매곡동 유적 측구부탄요에 대한 적용사례를 중심으로 -)

  • Sung, Hyong-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.214-221
    • /
    • 2008
  • Terrestrial magnetism has left traces through residues such as fossils of the terrestrial magnetism as time went by. An analysis of archaeological terrestrial magnetism is an estimation of dates of archaeological remains where baked earth is exposed by measuring the change of the past terrestrial magnetism through thermo-remnant magnetization of baked earth. This paper attempts to apply an analysis of the archaeological terrestrial magnetism to archaeological remains using fourteen soil samples extracted from a charcoal kiln with side window located at the Area Ⅰ of Maegokdong. The date of A.D.440${\pm}$15 the analysis of archaeological terrestrial magnetism came up with gives solid evidence, while an archeological chronicle used arrangements of surrounding artifacts because of the absence of remains and assumed uncertainly that a charcoal kiln with side window was from the three kingdom periods. This analysis of archaeological terrestrial magnetism has come to anchor as a main natural scientific analysis because it relatively easily removes pollutants and comes up with highly reliable results owing to its considerably narrow error tolerance of assumed dates.

Low-temperature Aqueous Oxidation of Titanomagnetites: Changes in Magnetic Properties of Pseudo-single Domain Particles (위단지구 티탄자철석의 수성 저온산화에 따른 자성변화)

  • 석동우
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.147-156
    • /
    • 2001
  • Titanomagnetites, the primary magnetic mineral in submarine basalts, generally has undergone some degree of low temperature oxidation to cation-deficient titanomaghemites. Synthetic analogues of natural titanomaghemite have been prepared by the removal of iron mechanism employing a low-temperature aqueous oxidation method. Along with the low-temperature oxidation of titanomagnetite, magnetic properties of titanomagnetite change sensitively. The results show that as the degree of oxidation increases, the Curie temperature (Tc) increases from $166^{\circ}C$ to $400^{\circ}C$, saturation magnetization (Ms) at room temperature decreases from 126.30 kAlm (25.26 emu/g) to 16.55 kAlrn (3.31 emu/g) monotonously, and coercive force (Hc) and coercivity of remanence (Hcr) increase from 6.13 kAlm (77 Oe) and 23.24 kAlm (292 Oe) to 38.83 kNm (488 Oe) and 47.03 kAlm (591 Oe), respectively. Low field susceptibility (X) decreases from $2023{\times}10^{-6}SI$ to $84{\times}10^{-6}S1$. Based on the results of this study, it is interpreted that the NRM intensity variations of the oceanic crust of presetnt day to 30 Ma is due to the formation of titanomahemites of various degree of oxidation by the low-temperature aqueous oxidation of titanomagnetite, while the magnetic intensity changes of the oceanic crust older than 30 Ma is presumably caused by the combined effect of the formation of titanomaghemites and subsequent inversion of titanomagnemites. DetaileJ causes of the variations of NRM intensity of the oceanic crust may be revealed by systematic studies of the oceanic-floor basalts in the future.

  • PDF

Archaeomagnetic Dating of a Layer of Baked Earth on Daegu Buinsa Site (대구 부인사 유적 소토층의 고고지자기 연대)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.185-192
    • /
    • 2012
  • Issues of chronology on archaeological remains or relics have been a storm-center of controversy when various archaeological researches have been done. Sometimes there is a limit for figuring out issues of chronology by archaeological research. In that case, the field of natural science is often needed to work out issues of chronology. Among various subjects in natural science, archaeomagnetism plays an important role in dating archaeological remains for baked earth bearing relics. In particular, archaeomagnetism is of use for sites where directly excavated dating proxy is unavailable. Terrestrial magnetism changes along with the passage of time and leaves trace by many kinds of residual magnetization which could be called fossil of terrestrial magnetism. Archaeomagnetic dating method is used to assign a date to the archaeological remains in which baked earth is found by measuring the changes of terrestrial magnetism through the thermal remanent magnetization retained in baked earth. This study aims to constrain the age of fire at Buinsa, Daege, Korea using 27 samples that were collected from a layer of baked earth. Buinsa is famous for the place where kept the first edition of Tripitaka Koreana, which was lost in fire at the second invasion of mongolia. In addition, there is a record that there was revolt around this region in A.D.1203. According to archaeomagnetic dating, ages of A.D.1150~1200 and A.D.1130~1210 were assigned for the two building sites in Buinsa, respectively. To this end, it can be concluded that the layer of baked earth on the two building sites in Buinsa recorded the vestige of fire caused by revolt.