• Title/Summary/Keyword: 자연유기물질

Search Result 149, Processing Time 0.028 seconds

Removal characteristics of NOM in advanced water treatment using ceramic MF membrane (세라믹막(MF) 고도정수처리에서 NOM 제거 특성)

  • You, Sang-Jun;Park, Sung-Han;Lim, Jae-Lim;Suh, Jeong-Min;Jang, Seong-Ho;Hong, Sung-Chul;Yi, Pyong-In
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2014
  • This study assessed the removal efficiency of NOM which is known as the precursors of DBPs in advanced water treatment using the ceramic membrane filtration, introduced the first in the nation at the Y water treatment plant (WTP). It is generally well-known that the removal of NOM by MF Membrane is very low in water treatment process. But, the result of investigation on removal efficiency of NOM in advanced water treatment using the ceramic membrane was different as follows. The removal rate of organic contaminant by the ceramic membrane advanced water treatment was determined to be 65.5% for the DOC, 85.8% for UV254, and 77 to 86% for DBPFP. The removal rate of pre-ozonation was found to be 6 to 15% more effective compared with the pre-chlorination. The removal rate of DOC and $UV_{254}$ in biological activated carbon(BAC) process was over 50% and 75%, respectively although the rate was decreased 10 ~ 20% according to analysis items in converting from GAC to BAC.

Influencing Factors on NOM Removal using Blended Coagulants (혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Taxonomic and Floristic Accounts of the Genus Trachelomonas Ehrenberg 1833 (Euglenophyceae) from Korea (한국산 담수조 Trachelomonas속 (Euglenophyceae)의 분류와 조류상)

  • Kim, Jun-Tae;Coute, Alain;Boo, Sung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.80-108
    • /
    • 2000
  • This paper deals with floristic and taxonomic accounts of 47 taxa of the genus Trachelomonas collected from 58 waters in Korea. Of these, 19 taxa are added to the Korean Trachelomonas flora, and 4 taxa, T. curta var. reticulata, T. koreana, T. planctonica var. papillosa, and T. spina are newly recorded in the world flora of the euglenoids. Detailed description and illustrations are given for each species. Since 23 taxa are previously reported in the Korean freshwaters, a total of 70 taxa are listed up in the Korean Trachelomonas flora. Trachelomonas species are abundant and diverse in old or stagnant swamps or ponds, where is enriched with organic matters and nutrient salts. T. bacillifera, T. hispida, and T. volvocina formed water blooming in the natural swamps or fishery ponds in spring and summer.

  • PDF

Removal of natural organic matter and trihalomethane formation potential by four different coagulants during coagulation-microfiltration processes (응집과 막여과 공정에서 응집제에 따른 유기물 및 THMFP제거)

  • Park, Keun Young;Choi, Yang Hun;Jin, Yong Chul;Kang, Sun Ku;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.101-112
    • /
    • 2013
  • Integrated process with coagulation and microfiltration as an advanced water treatment has been expanded its application in recent years due to its superb removal of particles and natural organic matter. In usual, effectiveness of coagulation sometimes determines performance of the whole system. Several new polymeric coagulants introduced to water utilities for better efficiency were studied in this paper. Three polymeric coagulants (i.e., PACl, PACs, and PAHCs) along with alum were evaluated for removal of natural organic matter, especially for reduction of trihalomethane formation potential, for which regulation has become stringent. Turbidity removal was closely related to pH variation showing the reduced turbidity removal by PACs due to the decreases in the pH of supernants at high doses. The four coagulants showed different organic matter removal during coagulation and affected the removal in microfiltration. For instance, DOC concentration was not reduced by microfiltration when PAHCs were used however 10 % of DOC removal was observed by microfiltration with alum coagulation. Coagulation pretreatment also impacted the THM removals, i.e., approximately 30 % of THMs and 13 % of DOC was removed by microfiltration only, but 40 to 67 % of THMs and 30 % of DOC was removed by the integrated process. Strategies on selection of coagulants are needed depending on characteristics of target pollutants in raw waters.

Fluorescence Properties of Size Fractions of Dissolved Organic Matter Originated From Different Sources (생성 기원에 따른 용존 자연유기물질 분자량별 형광특성 비교)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.482-489
    • /
    • 2007
  • Fluorescence properties and carbohydrate content were investigated using ultrafiltrated size fractions of dissolved organic matters (DOM) originated from different sources. The materials included a treated sewage, an algal organic matter, and a soil leachate, all of which are major constituents of dissolved organic matter in a typical urban river. Four different size fractions were separated from the three sources of each DOM. The size distribution demonstrated that a higher molecular weight fraction was more present in soil leachate compared to two other source DOMs. A higher content of carbohydrates was observed in the following order - algal DOM > treated sewage > soil leachate. A wide range of specific UV absorbance was observed from size fractions of a single source DOM, indicating that aromatic carbon structures are heterogeneously distributed within one source of DOM. The structural heterogeneity was the most pronounced for the soil leachate. The fluorescence index ($F_{450}/F_{500}$) of the treated sewage was similar to that (2.0) typically obtained from autochthonous DOM, suggesting that the treated sewage exhibited autochthonous organic matter-like properties. No protein-like fluorescence intensities were observed for all of the soil leachate size fractions whereas they were observed with two other source DOMs. Based upon the fluorescence peak ratios from fluorescence excitation-emission matrix (EEM), two discrimination indices could be suggested to distinguish three different source DOMs. It is expected that the suggested discrimination indices will be useful to predict the sources of DOM in a typical urban river affected by treated sewage.

Recent Development of Removal and Treatment of Toxic Heavy Metals by Microorganisms (유독 중금속 오염물질 처리를 위한 미생물균주의 최근 이용 및 개발)

  • 방상원;최영길;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • There are several ways to remove and treat toxic heavy metals in the environment: chemical, physical and biological ways. The biological treatment utilizes the natural reactions of microorganisms living in the environments. These reactions include biosorption and bioaccumulation, oxidation and reduction, methylation and demethylation, metal - organic complexation and insoluble complex formation. The biological reactions provide a crucial key technology in the remediation of heavy metal-contaminated soils and waters. According to recent reports, various kinds of heavy metal species were removed by microorganisms and the new approaches and removal conditions to remediate the metals were also tried and reported elsewhere. This was mostly carried out by microorganisms such as fungi, bacteria and alga. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment.

  • PDF

Reviews Value-in-Use of Specific Proteins Induced from Biological Resources (생물자원 유래 특이적 단백질의 이용가치에 관한 고찰)

  • Hyun, Dong-Yun;Kim, Ok-Tae;Bang, Kyong-Hwan;Kim, Young-Chang;Kang, Seung-Weon;Cha, Seon-Woo;Kim, Se-Yun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3-3
    • /
    • 2010
  • 소나무에서 추출해낸 천연유기유황(Natural Sulfur)의 의학적 가치는 1972년 Jacob 박사와 Herschler 박사가 오래곤 과학대학에서 천연식이유황(Natural Sulfur/MSM)을 가지고 표피조직에 미치는 영향을 구명하면서 keratin 단백질에 대한 연구가 활성화 되기 시작하였다. 세포내 골격물질은 크게 형태와 조성에 따라서 actin microfilament, microtubule, 그리고 intermediate filament(IF)로 구분된다. keratin의 특성은 keratin intermediate family중에서 K17 IF가 새로운 기능을 나타내는데 피부세포의 성장에 핵심적인 조절 역할을 한다는 사실이 밝혀 지면서 Dr. Pierre A. Coulombe(The Johns Hopkins University School of Medicine)연구실은 브로컬리와 같은 십자화과 식물 등에 과량 존재하는 항산화 및 항암물질인 sulforaphane이 K17의 발현을 특이적으로 증가시킨다는 것을 알아내어 피부박리와 같은 피부손상을 기능적으로 복구시킬수 있음을 확인하였다. 현재는 수포성 표피박리증 환자군의 많은 부분을 차지하는 K14 돌연변이와 동일한 유전적 변형을 일으킨 생쥐모델을 이용한 약물 효과 검증과 전 임상단계의 인체실험을 함께 진행중에 있다. Mark E. Van Dyke 박사(Wake Forest Institute for Regenerative Medicine Medical Center)는 인간의 머리털에서 유래된 keratin으로 외상에 의한 신경 절단이나 압좌(압박손상)는 현재 다른 부위의 신경을 잘라 이식하거나 절단된 신경 양끝을 인공도관(conduit)으로 연결해 신경재생을 유도하는 미세수술을 시행하게 되는데, 신경재생을 유도하는 도관에 keratin을 주입하면 신경이식과 맞먹는 신경재생 성공률을 기대할 수 있다고 하였다. 앞으로는 동물성 keratin뿐만 아니라 식물성 keratin도 함께 연구할 필요가 있다. 동물성 keratin의 농업적 이용은 가금류 깃털의 keratin을 축출하여 친환경 육묘용 용기를 만드는데 있다. 이 용기는 자연조건에서 생분해될 수 있는 특성을 갖고 있다.

  • PDF

Development of the Biological Oxidation Filter System for Water Treatment (수처리용 생물산화 여과장치 개발)

  • 염병호;정충혁;문정석;최승일
    • Environmental engineer
    • /
    • s.181
    • /
    • pp.70-75
    • /
    • 2001
  • 본 연구는 '99년 7월에 벤처형 중소기업 기술개발 지원사업으로 신규 계약된 과제로서 상수원수의 전처리 및 하수 2차 침전수의 재처리 공정에 활용될 생물 산화 여과지를 개발하는 것이다. 생물 산화 여과 system은 상수 원수의 전처리, 상수도의 고도정수 처리, 하수 및 폐수처리에 이용될 수 있는 것으로, 특히 물리적 여과기능과 포기 과정을 통한 산화 기능을 포함하는 생물학적 분해 및 자연정화처리환경을 유지하여 수질이 악화된 상수도의 전·후처리나 하.폐수의 3차 처리에 적용하기 위한 것이다. 생물 산화 여과 시스템은 여과지의 하부 장치에 균등한 공기(산소)공급시설을 하여 여과층에 연속적으로 공기를 공급하면서 여과를 함으로서 생물막 여과 및 산화 기능으로 유기물질, 철, 망간 등을 제거하고 공기의 부상력에 의하여 조류, 부유물질, 냄새 등을 동시에 제거하는 System이다. 현재 상수처리 공정으로서의 생물 산화 여과지 개발을 위해 Bench-scale과 semi-pilot plant를 거쳐 Y시 M취수장애 pilot plant를 설치하여 연구를 진행중에 있으며, 또한, G시 G하수처리장에 하수처리 공정에 관한 연구를 위해 pilot plant를 설치하고 하수 3차 처리와 저농도 하·폐수 처리를 중심으로 연구중에 있다. 아래의 연구 결과는 정수처리 공정 연구를 위한 Bench-scale plant실험을 통해 얻은 결과치이며 현재까지 진행된 연구는 주로 정수처리 공정 중심으로 이루어 졌으나 pilot plant에서는 정수 및 하수처리에서의 생물산화여과공정의 연구가 진행중이다. 현재 연구가 진행중이므로 각 인자별 최적운전조건 등은 계속적인 실험과 연구를 통해 찾아지겠으나 현재까지 수행된 연구자료를 기반으로 볼 때 생물산화 여과장치는 탁도, SS, VSS 등의 제거에 탁월한 효능을 보이고 있다. 수처리용 장치로서의 이러한 기본적인 기능 이외에 NPOC, DOC 제거에도 뛰어난 효능을 보이고 있으며 특히 정수처리 공정에서 문제시 되고 있는 동절기 암모니아성 질소제거 또한 큰 가능성을 보여주고 있다. 그 동안 외국기술에 전면 의존해 오던 생물 산화 여과방식의 국내개발은 비용 절감뿐만 아니라 국내 실정에 맞는 기술개발이라는 점에서 향후 그 적용 범위를 넓혀 갈 수 있을 것이다.

  • PDF

Rejection Behavior of 2-MIB and Geosmin Using Polyethersulfone Nanofiltration Membrane and Surface Hydrophilicity Effect Using $TiO_2$ Particles (2-MIB와 Geosmin의 Polyethersulfone 나노 분리막 배제율 거동 및 $TiO_2$ 적용 표면 친수화 효과 관찰)

  • Nam, Dowoo;Kim, Mooin;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, rejection behavior of 2-MIB (methylisoborneal) and geosmin which are known as taste-and-odor (T & O) causing micropollutants in drinking water source was investigated using hydrophobic polyethersulfone (PES) nanofiltration "loose" membrane (MWCO : 400 Da). It was found that the rejection of the geosmin was higher than that of the 2-MIB in all experimental conditions tested. This study also showed that the rejections of 2-MIB and geosmin were increased by increasing solution pH due to enhancing electrostatic repulsions between micropollutants and membrane surface. The presence of natural organic matter led to increase the rejection of the hydrophobic 2-MIB and geosmin and the effectiveness was more pronounced at higher solution pH. Increasing hydrophilicity of the hydrophobic membrane surface by coating with $TiO_2$ particles resulted in the significant increase in the rejection of 2-MIB and geosmin. In addition to the charge repulsion, this result suggests that hydrophobic-hydrophobic interaction should be one of main rejection mechanisms of T & O compounds by NF membrane.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF