• Title/Summary/Keyword: 자연어 분석

Search Result 563, Processing Time 0.03 seconds

Automatic Correction of Errors in Annotated Corpus Using Kernel Ripple-Down Rules (커널 Ripple-Down Rule을 이용한 태깅 말뭉치 오류 자동 수정)

  • Park, Tae-Ho;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.636-644
    • /
    • 2016
  • Annotated Corpus is important to understand natural language using machine learning method. In this paper, we propose a new method to automate error reduction of annotated corpora. We use the Ripple-Down Rules(RDR) for reducing errors and Kernel to extend RDR for NLP. We applied our system to the Korean Wikipedia and blog corpus errors to find the annotated corpora error type. Experimental results with various views from the Korean Wikipedia and blog are reported to evaluate the effectiveness and efficiency of our proposed approach. The proposed approach can be used to reduce errors of large corpora.

Efficient Classification of User's Natural Language Question Types using Word Semantic Information (단어 의미 정보를 활용하는 이용자 자연어 질의 유형의 효율적 분류)

  • Yoon, Sung-Hee;Paek, Seon-Uck
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.251-263
    • /
    • 2004
  • For question-answering system, question analysis module finds the question points from user's natural language questions, classifies the question types, and extracts some useful information for answer. This paper proposes a question type classifying technique based on focus words extracted from questions and word semantic information, instead of complicated rules or huge knowledge resources. It also shows how to find the question type without focus words, and how useful the synonym or postfix information to enhance the performance of classifying module.

An Example-Based Natural Language Dialogue System for EPG Information Access (EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템)

  • Kim, Seok-Hwan;Lee, Cheong-Jae;Jung, Sang-Keun;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.65-70
    • /
    • 2006
  • 본 논문에서는 EPG 정보 검색을 위한 자연어 대화 시스템에 대해 논한다. 자연어 대화 시스템 구축을 위한, 대화 예제를 이용한 상황 기반 대화 관리 방법론은, 효율적이고 실용적인 대화 시스템 구축을 가능하게 한다. 대화 시스템은 사용자 발화에 대해 적합한 시스템응답 발화를 출력하는 과정으로 진행되며, 이를 위해, 사용자 발화 의미 분석, 대화 관리, 시스템 응답 발화 생성의 과정을 거친다. 정확하고 신속한 정보의 전달이 중요한 EPG 정보 검색 도메인의 특성상 EPG 데이터베이스의 관리 및 갱신이 중요한 요소로 작용한다. 이를 위해 웹마이닝 기반의 EPG 데이터베이스 관리자를 구현함으로써 데이터베이스 구축에 필요한 비용을 최소화하고, 신속하고 정확한 정보를 제공할 수 있었다.

  • PDF

Natural Language-based Immersive English Tutoring System (자연어 대화 기반 몰입환경 영어 교육 시스템)

  • Lee, Kyusong;Lee, Sungjin;Lee, Jonghoon;Noh, Hyeongjong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.22-27
    • /
    • 2010
  • 최근 국가적 차원에서 영어교육에 대한 많은 투자가 이루어지고 있으나 기존의 주입식, 암기식 영어 교육은 회화 실력 향상에 큰 도움을 주지 못하였다. 컴퓨터를 이용한 영어교육 또한 많은 관심을 얻고 있으나 실제 의사소통을 위한 회화 학습에 대한 고려는 깊지 않으며, 주어진 흐름의 대본을 따라 단순히 읽고 반복하는 수준의 시스템만 존재하고 있다. 이러한 학습형태는 흥미 유발 동기가 약하여 사용자로 하여금 장기간 꾸준히 학습하게 만들지 못한다는 문제가 있다. 이러한 문제점에 대하여 제2언어 습득 이론에 바탕을 둔 자연어 처리 기반 몰입 환경 영어 교육 시스템을 제안한다. 이는 도메인 확장성이 뛰어난 예제 기반 대화 시스템을 3 차원 가상공간과 결합한 시스템으로 자연스러운 대화를 통한 외국어 회화 연습을 하는 과정에서 학습자의 발화 오류를 분석하고 교육적 피드백을 제공한다. 또한 현실과 비슷한 몰입 환경에서 체험형 기술을 통해 자발적인 학습을 유도하고 집중력, 기억력을 획기적으로 높이고자 한다. 본 논문에서는 영어교육 시스템의 이론적 배경, 예제 기반 대화관리, 시스템 구성요소와 동작에 대하여 중점적으로 기술하였다.

  • PDF

SaJuTeller: Conditional Generation Deep-Learning based Fortune Telling Model (SaJuTeller: 조건부 생성 모델을 기반으로 한 인공지능 사주 풀이 모델)

  • Hyeonseok Moon;Jungseob Lee;Jaehyung Seo;Sugyeong Eo;Chanjun Park;Woohyeon Kim;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.277-283
    • /
    • 2022
  • 사주 풀이란 주어진 사주에 대해서 그에 맞는 해석 글을 생성해주는 작업을 의미한다. 전통적으로 사주 풀이는 온전한 사람의 영역으로 인식되어왔으나, 우리는 본 연구를 통해 사주 풀이 영역도 인공지능으로 대체할 수 있을 것이라는 가능성을 탐구한다. 본 연구에서 우리는 최근 연구되고 있는 자연어 생성분야의 연구들에서 영감을 받아, 사주 유형과 사주 풀이 내에 포함할 명사 키워드를 기반으로 풀이글을 생성하는 인공지능 모델 SaJuTeller를 설계한다. 특히 이전 문맥을 고려하여 풀이글을 생성하는 모델과 단순 사주 유형 및 명사 키워드를 기반으로 풀이글을 생성하는 두가지 모델을 제안하며, 이들 각각의 성능을 분석함으로써 각 모델의 구체적인 활용 방안을 제안한다. 본 연구는 우리가 아는 한 최초의 인공지능 기반 사주풀이 연구이며, 우리는 이를 통해 사주풀이에 요구되는 전문인력의 노력을 경감시킴과 동시에, 다양한 표현을 가진 사주 풀이 글을 생성할 수 있음을 제안한다.

  • PDF

Multi-task Learning Approach for Deep Neural Networks Using Temporal Relations (시간적 관계정보를 활용한 멀티태스크 심층신경망 모델 학습 기법)

  • Lim, Chae-Gyun;Oh, Kyo-Joong;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.211-214
    • /
    • 2021
  • 다수의 태스크를 처리 가능하면서 일반화된 성능을 제공할 수 있는 모델을 구축하는 자연어 이해 분야의 연구에서는 멀티태스크 학습 기법에 대한 연구가 다양하게 시도되고 있다. 또한, 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. NLU 분야의 태스크를 더욱 정확하게 수행하려면 모델 내부적으로 시간정보를 반영할 필요가 있으며, 멀티태스크 학습 과정에서 추가적인 태스크로 시간적 관계정보를 추출하여 활용 가능하다. 본 논문에서는, 한국어 입력문장의 시간적 맥락정보를 활용할 수 있도록 NLU 태스크들의 학습 과정에서 시간관계 추출 태스크를 추가한 멀티태스크 학습 기법을 제안한다. 멀티태스크 학습의 특징을 활용하기 위해서 시간적 관계정보를 추출하는 태스크를 설계하고 기존의 NLU 태스크와 조합하여 학습하도록 모델을 구성한다. 실험에서는 학습 태스크들을 다양하게 조합하여 성능 차이를 분석하며, 기존의 NLU 태스크만 사용했을 경우에 비해 추가된 시간적 관계정보가 어떤 영향을 미치는지 확인한다. 실험결과를 통하여 전반적으로 멀티태스크 조합의 성능이 개별 태스크의 성능보다 높은 경향을 확인하며, 특히 개체명 인식에서 시간관계가 반영될 경우에 크게 성능이 향상되는 결과를 볼 수 있다.

  • PDF

Anaphora Resolution System for Natural Language Requirements Document in Korean based on Syntactic Structure (한국어 자연어 요구문서에서 구문 구조 기반의 조응어 처리 시스템)

  • Park, Ki-Seon;An, Dong-Un;Lee, Yong-Seok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.255-262
    • /
    • 2010
  • When a system is developed, requirements document is generated by requirement analysts and then translated to formal specifications by specifiers. If a formal specification can be generated automatically from a natural language requirements document, system development cost and system fault from experts' misunderstanding will be decreased. A pronoun can be classified in personal and demonstrative pronoun. In the characteristics of requirements document, the personal pronouns are almost not occurred, so we focused on the decision of antecedent for a demonstrative pronoun. For the higher accuracy in analysis of requirements document automatically, finding antecedent of demonstrative pronoun is very important for elicitation of formal requirements automatically from natural language requirements document via natural language processing. The final goal of this research is to automatically generate formal specifications from natural language requirements document. For this, this paper, based on previous research [3], proposes an anaphora resolution system to decide antecedent of pronoun using natural language processing from natural language requirements document in Korean. This paper proposes heuristic rules for the system implementation. By experiments, we got 92.45%, 69.98% as recall and precision respectively with ten requirements documents.

Alzheimer's Diagnosis and Generation-Based Chatbot Using Hierarchical Attention and Transformer (계층적 어탠션 구조와 트랜스포머를 활용한 알츠하이머 진단과 생성 기반 챗봇)

  • Park, Jun Yeong;Choi, Chang Hwan;Shin, Su Jong;Lee, Jung Jae;Choi, Sang-il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.333-335
    • /
    • 2022
  • 본 논문에서는 기존에 두 가지 모델이 필요했던 작업을 하나의 모델로 처리할 수 있는 자연어 처리 아키텍처를 제안한다. 단일 모델로 알츠하이머 환자의 언어패턴과 대화맥락을 분석하고 두 가지 결과인 환자분류와 챗봇의 대답을 도출한다. 일상생활에서 챗봇으로 환자의 언어특징을 파악한다면 의사는 조기진단을 위해 더 정밀한 진단과 치료를 계획할 수 있다. 제안된 모델은 전문가가 필요했던 질문지법을 대체하는 챗봇 개발에 활용된다. 모델이 수행하는 자연어 처리 작업은 두 가지이다. 첫 번째는 환자가 병을 가졌는지 여부를 확률로 표시하는 '자연어 분류'이고 두 번째는 환자의 대답에 대한 챗봇의 다음 '대답을 생성'하는 것이다. 전반부에서는 셀프어탠션 신경망을 통해 환자 발화 특징인 맥락벡터(context vector)를 추출한다. 이 맥락벡터와 챗봇(전문가, 진행자)의 질문을 함께 인코더에 입력해 질문자와 환자 사이 상호작용 특징을 담은 행렬을 얻는다. 벡터화된 행렬은 환자분류를 위한 확률값이 된다. 행렬을 챗봇(진행자)의 다음 대답과 함께 디코더에 입력해 다음 발화를 생성한다. 이 구조를 DementiaBank의 쿠키도둑묘사 말뭉치로 학습한 결과 인코더와 디코더의 손실함수 값이 유의미하게 줄어들며 수렴하는 양상을 확인할 수 있었다. 이는 알츠하이머병 환자의 발화 언어패턴을 포착하는 것이 향후 해당 병의 조기진단과 종단연구에 기여할 수 있음을 보여준다.

  • PDF

Transformer-based Language model Bert And GPT-2 Performance Comparison Study (Transformer기반의 언어모델 Bert와 GPT-2 성능 비교 연구)

  • Yoo, Yean-Jun;Hong, Seok-Min;Lee, Hyeop-Geon;Kim, Young-Woone
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.381-383
    • /
    • 2022
  • 최근 자연어처리 분야에서는 Bert, GPT 등 Transformer기반의 언어모델 연구가 활발히 이뤄지고 있다. 이러한 언어모델은 대용량의 말뭉치 데이터와 많은 파라미터를 이용하여 사전학습을 진행하여 다양한 자연어처리 테스트에서 높은 성능을 보여주고 있다. 이에 본 논문에서는 Transformer기반의 언어모델인 Bert와 GPT-2의 성능평가를 진행한다. 성능평가는 '네이버 영화 리뷰' 데이터 셋을 통해 긍정 부정의 정확도와 학습시간을 측정한다. 측정결과 정확도에서는 GPT-2가 Bert보다 최소 4.16%에서 최대 5.32% 높은 정확도를 나타내었지만 학습시간에서는 Bert가 GPT-2보다 최소 104초에서 116초 빠르게 나타났다. 향후 성능 비교는 더 많은 데이터와 다양한 조건을 통해 구체적인 성능 비교가 필요하다.

A Model for Post-processing of Speech Recognition Using Syntactic Unit of Morphemes (구문형태소 단위를 이용한 음성 인식의 후처리 모델)

  • 양승원;황이규
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.74-80
    • /
    • 2002
  • There are many researches on post-processing methods for the Korean continuous speech recognition enhancement using natural language processing techniques. It is very difficult to use a formal morphological analyzer for improving the speech recognition because the analysis technique of natural language processing is mainly for formal written languages. In this paper, we propose a speech recognition enhancement model using syntactic unit of morphemes. This approach uses the functional word level longest match which dose not consider spacing words. We describe the post-processing mechanism for the improving speech recognition by using proposed model which uses the relationship of phonological structure information between predicates md auxiliary predicates or bound nouns that are frequently occurred in Korean sentences.

  • PDF