• Title/Summary/Keyword: 자연어생성

Search Result 332, Processing Time 0.029 seconds

자연어를 이용한 사용자 접속에 관한 연구

  • Lee, Dong-Ae;Jang, Deok-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.149-155
    • /
    • 1990
  • MS-DOS 명령을 대신하는 자연어 인터페이스를 연구하였다. 자연어로 입력되는 한국어 문장을 형태소분석, 구문분석, 의미분석, 개념분석을 통해 대응되는 일련의 MS-DOS 명령을 생성한다. 형태소 분석에서는 Tabular Parsing법을 사용하였고, 구문분석에서는 문법적인 수식-피수식 관계를 확대하여 의미상의 수식-피수식 관계를 설정하고 이에 따라 문장을 몇개의 단위로 나눈다. 의미분석에서는 동사와 이들 단위들간의 관계와 단위를 구성하는 어절들간의 관계를 격관계로 설정하여, 개념망(semantic network)으로 문장의 의미를 표현한다. 이 개념망으로부터 MS-DOS 명령을 생성한다.

  • PDF

Boolean Formulation of Korean Natural Language Queries Using Syntactic Analysis (구문 분석에 기반한 자연어 질의로부터의 불리언 질의 생성)

  • Park, Mi-Hwa;Won, Hyung-Suk;Lee, Won-Il;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.73-80
    • /
    • 1998
  • 본 연구는 자연어 질의의 형태 및 구문 정보를 바탕으로 불리언 질의를 생성하는데 그 목적을 둔다. 일반적으로 대부분의 상용정보검색시스템은 입력형식을 검색성능이 종은 불리언 형태로 하고 있으나, 일반 사용자는 자신이 원하는 정보를 불리언 형태로 표현하는데 익숙하지 않다. 그러므로 본 정보검색시스템은 자연어 질의를 기본 입력형태로 하여 사용자의 편의성을 높이고, 이 질의를 범주문법에 기반한 구문분석 결과에 의해 복합명사를 고려한 불리언 형태로 변환하여 검색을 수행함으로써 시스템의 검색 성능의 향상을 도모하였다. 정보검색 실험용 데이터 모음인 KTSET2.0으로 실험한 결과 본 논문에서 제안한 자연어 질의로부터 자동 생성된 불리언 질의의 검객성능이 KTSET2.0에서 제공하는 수동으로 추출한 불리언 질의보다 8% 더 우수한 성능을 보였고, 기존 자연어질의 시스템이 수용해온 방법인 형태소 분석을 거쳐 불용어를 제거한 후 Vector 모델을 적용하여 검색을 수행한 경우보다는 23% 더 나은 성능을 보였다.

  • PDF

SaJuTeller: Conditional Generation Deep-Learning based Fortune Telling Model (SaJuTeller: 조건부 생성 모델을 기반으로 한 인공지능 사주 풀이 모델)

  • Hyeonseok Moon;Jungseob Lee;Jaehyung Seo;Sugyeong Eo;Chanjun Park;Woohyeon Kim;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.277-283
    • /
    • 2022
  • 사주 풀이란 주어진 사주에 대해서 그에 맞는 해석 글을 생성해주는 작업을 의미한다. 전통적으로 사주 풀이는 온전한 사람의 영역으로 인식되어왔으나, 우리는 본 연구를 통해 사주 풀이 영역도 인공지능으로 대체할 수 있을 것이라는 가능성을 탐구한다. 본 연구에서 우리는 최근 연구되고 있는 자연어 생성분야의 연구들에서 영감을 받아, 사주 유형과 사주 풀이 내에 포함할 명사 키워드를 기반으로 풀이글을 생성하는 인공지능 모델 SaJuTeller를 설계한다. 특히 이전 문맥을 고려하여 풀이글을 생성하는 모델과 단순 사주 유형 및 명사 키워드를 기반으로 풀이글을 생성하는 두가지 모델을 제안하며, 이들 각각의 성능을 분석함으로써 각 모델의 구체적인 활용 방안을 제안한다. 본 연구는 우리가 아는 한 최초의 인공지능 기반 사주풀이 연구이며, 우리는 이를 통해 사주풀이에 요구되는 전문인력의 노력을 경감시킴과 동시에, 다양한 표현을 가진 사주 풀이 글을 생성할 수 있음을 제안한다.

  • PDF

3D Object Extraction Mechanism from Informal Natural Language Based Requirement Specifications (비정형 자연어 요구사항으로부터 3D 객체 추출 메커니즘)

  • Hyuntae Kim;Janghwan Kim;Jihoon Kong;Kidu Kim;R. Young Chul Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.453-459
    • /
    • 2024
  • Recent advances in generative AI technologies using natural language processing have critically impacted text, image, and video production. Despite these innovations, we still need to improve the consistency and reusability of AI-generated outputs. These issues are critical in cartoon creation, where the inability to consistently replicate characters and specific objects can degrade the work's quality. We propose an integrated adaption of language analysis-based requirement engineering and cartoon engineering to solve this. The proposed method applies the linguistic frameworks of Chomsky and Fillmore to analyze natural language and utilizes UML sequence models for generating consistent 3D representations of object interactions. It systematically interprets the creator's intentions from textual inputs, ensuring that each character or object, once conceptualized, is accurately replicated across various panels and episodes to preserve visual and contextual integrity. This technique enhances the accuracy and consistency of character portrayals in animated contexts, aligning closely with the initial specifications. Consequently, this method holds potential applicability in other domains requiring the translation of complex textual descriptions into visual representations.

Emotion Recognition from Natural Language Text Using Predicate Logic Form (Predicate Logic Form을 이용한 자연어 텍스트로부터의 감정인식)

  • Seol, Yong-Soo;Kim, Dong-Joo;Kim, Han-Woo;Park, Jung-Ki
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.411-412
    • /
    • 2010
  • 전통적으로 자연어 텍스트로부터의 감정인식 연구는 감정 키워드에 기반한다. 그러나 감정 키워드만을 이용하면 자연어 문장이 원래 갖고 있는 통사정보나 의미정보는 잃어버리게 된다. 이를 극복하기 위해 본 논문에서는 자연어 텍스트를 Predicate Logic 형태로 변환하여 감정 정보처리의 기반데이터로 사용한다. Predicate Logic형태로 변환하기 위해서 의존 문법 구문분석기를 사용하였다. 이렇게 생성된 Predicate 데이터 중 감정 정보를 갖고 있는 Predicate만을 찾아내는데 이를 위해 Emotional Predicate Dictionary를 구축하였고 이 사전에는 하나의 Predicate마다 미리 정의된 개념 클래스로 사상 시킬 수 있는 정보를 갖고 있다. 개념 클래스는 감정정보를 갖고 있는지, 어떤 감정인지, 어떤 상황에서 발생하는 감정인지에 대한 정보를 나타낸다. 자연어 텍스트가 Predicate으로 변환되고 다시 개념 클래스로 사상되고 나면 KBANN으로 구현된 Lazarus의 감정 생성 규칙에 적용시켜 최종적으로 인식된 감정을 판단한다. 실험을 통해 구현된 시스템이 인간이 인식한 감정과 약 70%이상 유사한 인식 결과를 나타냄을 보인다.

  • PDF

Natural Langugae Inference as Re-ranking for Multiple Question Answering (질의응답 결과 재순위화를 위한 자연어 추론 모델)

  • Lee, Jihyung;Lee, Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.405-409
    • /
    • 2021
  • 자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.

  • PDF

Multi-Decoder Conversational Model for Generating Robust Response Based on Denoising Mechanism (강건한 응답 생성을 위한 디노이징 메커니즘 기반 다중 디코더 대화 모델)

  • Kim, Tae-Hyeong;Park, Seong-Bae;Park, Se-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.141-146
    • /
    • 2018
  • 최근 대화 모델 학습에는 시퀀스-투-시퀀스 모델이 널리 활용되고 있다. 하지만 기본적인 시퀀스-투-시퀀스 모델로 학습한 대화 모델은 I don't know 문제와 사오정 문제를 내포한다. I don't know 문제는 입력 발화에 대해 안전하고 무미건조한 단편적인 대답을 많이 생성하는 문제이다. 사오정 문제는 입력 발화에 대해 적절한 응답을 생성했지만 입력 발화와 동일한 의미를 지니지만 어순, 어미 등의 변화가 있는 발화에는 적절한 응답을 생성하지 못하는 문제이다. 이전 연구에서 디노이징 메커니즘을 활용하여 각각의 문제를 완화하는 대화 모델들을 학습할 수 있음을 보였으나 하나의 모델에서 두 문제를 동시에 해결하지는 못하였다. 본 논문에서는 디노이징 메커니즘을 활용하여 각각의 문제에 강점을 지닌 디코더들을 학습하고 응답 생성 시 입력 발화에 따라 두 디코더를 적절하게 반영하여 언급한 문제 모두에 대해 강건한 응답을 생성할 수 있는 모델을 제안한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 단일 문제를 해결하는 모델들과 비교하여 ROUGE F1 점수와 사람이 평가한 정성 평가에서 성능 향상을 보였다.

  • PDF

An automatic Industrial/Occupational Code Classification Tool Using Information Retrieval Technique (정보검색 기법을 이용한 산업/직업 코드 분류 도구)

  • 임희석;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.75-78
    • /
    • 2001
  • 본 논문은 통계청에서 실시하는 인구주택 총조사로부터 획득된 각 개인의 직업 및 직종을 기술하고 있는 자연어를 입력받아 입력된 자연어가 의미하는 한국 표준 산업/구업 분류 코드의 후보들을 생성하는 산업/직업 코드 분류 도구를 제안한다. 코드 분류는 분류할 코드를 문서 범주로 간주하면 문서 분류와 동일한 문제로 생각할 수 있다. 하지만 본 산업/직업 코드 분류 문제는 입력되는 자연어의 길이가 한 두 문장 정도로 매우 짧아 문서 분류에 사용될 자질들이 개수가 주어 기존의 문서 분류 기법을 적용하기 어렵다. 이에 본 논문은 표준 코드를 기술하고 있는 내용을 미리 색인하고 입력된 자연어로부터 질의어를 생성하여 벡터공간모델로 질의어를 검색후 질의어와 일치율이 가장 높은 코드들을 분류될 후보 코드로 계시하는 정보검색 기법을 이용한 산업/직업 코드 분류 도구를 개발하였다.

  • PDF

Natural Language Query Processing Based Intelligent Information Retrieval (자연어 질의 처리 기반 지능형 정보검색)

  • Lee, Eun-Ok;Lee, Youn-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.505-508
    • /
    • 2003
  • 웹 문서의 홍수 속에서 사용자의 요구에 맞는 문서만을 검색해 주는 정보 검색 시스템이 요구되고 있다. 자연어 질의를 이용한 정보검색 방법은 초보자도 사용이 쉽고 사용자의 의도를 파악하기가 쉬어 지능형 정보검색에 적합하다. 따라서 현재는 자연어 질의로부터 사용자의 의도를 파악하기 위한 다양한 연구가 진행되고 있다. 본 논문에서는 구조화된 자연어 질의에서 한국어의 문맥 구조를 기반으로 하여 사용자의 의도를 파악하고 이를 이용하여 정보검색 질의를 생성하는 방법을 제안한다. 이렇게 생성된 질의어를 이용해서 메타정보검색을 하면 보다 정확하고 사용자의 의도에 맞는 문서만이 검색되었다.

  • PDF

Considerations for Applying Korean Natural Language Processing Technology in Records Management (기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항)

  • Haklae, Kim
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.129-149
    • /
    • 2022
  • Records have temporal characteristics, including the past and present; linguistic characteristics not limited to a specific language; and various types categorized in a complex way. Processing records such as text, video, and audio in the life cycle of records' creation, preservation, and utilization entails exhaustive effort and cost. Primary natural language processing (NLP) technologies, such as machine translation, document summarization, named-entity recognition, and image recognition, can be widely applied to electronic records and analog digitization. In particular, Korean deep learning-based NLP technologies effectively recognize various record types and generate record management metadata. This paper provides an overview of Korean NLP technologies and discusses considerations for applying NLP technology in records management. The process of using NLP technologies, such as machine translation and optical character recognition for digital conversion of records, is introduced as an example implemented in the Python environment. In contrast, a plan to improve environmental factors and record digitization guidelines for applying NLP technology in the records management field is proposed for utilizing NLP technology.