• Title/Summary/Keyword: 자속 밀도

Search Result 289, Processing Time 0.025 seconds

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Permeability Aftereffect in FeCuNbSiB Alloy (FeCuNbSiB 합금의 투자율 여효)

  • Lee, Yong-Ho;Sin, Yong-Dol;No, Tae-Hwan;Gang, Il-Gu
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 1992
  • Annealing effects on the permeability aftereffect(disaccommodation) of liquid quenched single strip $Fe_{73.5}Cu_1Nb_3Si_{16}B_{6.5}$ alloys were investigated with pulse method. The initial susceptibility X, $B_{10},$ (the flux density at 10 Oe) and disaccommodation intensity D (D = [X(1 s)-X(64 s)]/X(1 s), where X(1 s) and X(64 s) are the susceptibility of 1 and 64 s of rest time after A. C. demagnetization) were about 800, 0.8 T and 16 %, respectively. The soft magnetic properties were improved with isothermal annealing for 1 hour at $300{\sim}600^{\circ}C.$ X, $B_{10},$ and D at $570^{\circ}C$ of optimum annealing temperature were 15000, 1.2 T and 1.1 %, respectively. The origin of the change of characteristics were examined with fine crystalline structure and magnetostriction.

  • PDF

Electromagnetic-structure Co-simulation Analysis of Aluminum Pipe with Electromagnetic Forming according to Temperature (전자기 성형 시 온도에 따른 알루미늄 파이프의 전자기-구조 연동해석)

  • Kang, Hanbin;Tak, Seungmin;Baek, Inseok;Choi, Jinkyu;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.64-69
    • /
    • 2018
  • The high-velocity electromagnetic forming (EMF) process is based on the Lorentz force and the energy of the magnetic field. The advantages of EMF include improved formability, wrinkle reduction, and non-contact forming. In this study, the electromagnetic-structural interlocking analysis was performed in order to analyze the moldability of aluminum pipe using electromagnetic molding. The magnetic flux density was decreased due to increasing electrical resistance as the temperature increased, and the stress-strain curve decreased. The higher the temperature, the lower the flow stress, increasing deformation.

Design and Performance Analysis of Current Source for 3.0T MREIT System (3.0T MREIT 시스템을 위한 정전류원의 설계 및 성능검증)

  • 김규식;오동인;백상민;오석훈;우응제;이수열;이정한
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2004
  • In Magnetic Resonance Electrical Impedance Tomography (MREIT), we inject current through electrodes placed on the surface of a subject and measure the induced magnetic flux density distribution using an MRI scanner. This requires a constant current source whose output pulses are synchronized with MR pulse sequences. In this paper, we present a design and performance analysis of a current source used in a 3.0T MREIT system. The developed current source was tested using a saline phantom. We found that its performance is satisfactory for the current MREIT system. We suggest future improvements for better SNR(signal-to-noise ratio).

Mutual Inductance Calculation and Analysis between Two Circular Coils of Perpendicular Arrangement (수직 배열된 원형 코일 사이의 상호 인덕턴스 계산 및 해석)

  • Kim, Jin-Wook;Son, Hyeon-Chang;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.999-1004
    • /
    • 2011
  • In this paper, calculation method of mutual inductance for two circular coils which are widely used in wireless power transfer system and analysis results using the method are proposed. Two circular coils are arranged in a perpendicular way. For calculation of the mutual inductance, an Rx coil placed perpendicularly with the other coil is uniformly subdivided into many unit cells and both magnetic flux density linked with the Rx coil at each unit cell and the total magnetic flux density of the Rx coil are obtained. Two circular coils are considered as a filamentary coil and uniform current density on each coil is assumed. For verification, helical and spiral coils are fabricated. As a result of measurement in 50 cm to 100 cm distance, theoretical mutual inductance is almost agreed with measured one.

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.

Characteristic of Iron Oxide and the Magnetic Properties of Sr-ferrite by Roasting Temperature of Iron Oxide (산화철 배소에 따른 분체 특성 및 Sr-ferrite 자석의 소결 특성)

  • Jang Se-Dong
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.19-25
    • /
    • 2003
  • This experiment was carried out to examine the effect of iron oxide roasting for Sr-ferrite magnet. Chloride content was decreased with raising the 2 nd roasting temperature of iron oxide for ruthner process iron oxide. The optimization temperature for roasting of ruthner process iron oxide was around $800^{\circ}C$ as average particle size 1.5∼1.9 $\mu\textrm{m}$, apparent bulk density 1.4 g/$m\ell$ and chloride content 0.05%. The relation between Br and HcJ by sintering temperature for Sr-ferrite magnet was found to be Br≒-0.258HcJ+494. In case of having a vibrating disk mill for the ruthner process iron oxide, the magnetic properties were Br 421 mT and HcJ 251 kA/m.

The Magnetic Properties of Fe-Hf-C Soft Magnetic Thin Films (Fe-Hf-C계 연자성 박막합금의 자기적 성질)

  • 최정옥;이정중;한석희;김희중;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Thin films of soft magnetic Fe-Hf-C alloys with nanoscale crystallites were investigated in this study. The films were fabricated by an RF diode magnetron sputtering apparatus and subsequently annealed in vacuum. The soft magnetic properties of the films were observed to differ depending on the different substrates such as Corning 7059, $CaTiO_3$ and $Al_2O_3-TiC$ with various underlayer(Cr, $SiO_2$) thickness. This results may be due to the interdiffusion between the substrate and the magnetic layer and/or between the underlayer and the magnetic layer, rather than the microstructural change such as grain size. The Fe-Hf-C films with high permeability up to 4000(at 1 MHz) and saturation magnetization up to 16 kG were obtained in the vicinity of phase boundary between the crystalline and amorphous state when the size of ${\alpha}-Fe$ grains is about 5 nm. And also the films were found to have thermal stability up to $600^{\circ}C$.

  • PDF

The Magnetic Properties of FeBSiNb Alloy Ribbons with High Glass forming Ability (고 비정질 형성능을 가진 FeBSiNb 합금 리본의 자기적 특성)

  • Noh, Tae-Hwan;Kim, Gu-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.154-159
    • /
    • 2002
  • Amorphous FeBSiNb alloy ribbons having bulk glass forming ability and high saturation magnetic flux density were produced by single-roller melt spinning apparatus in the thickness range of 22∼102㎛. With the increase of thickness, the coercive force and squareness ratio decreased, while maximum permeability and AC permeability increased. However electrical resistivity was almost constant. Furthermore refined and complex magnetic domain structure was observed in thicker ribbons owing to the change in internal magnetic anisotropy. For the alloy with the thickness of 81㎛, small coercive force of 24 mOe and high effective permeability of 12,000 at 1㎑ were obtained, those are considered to be better comparing to the conventional soft magnetic amorphous alloys (∼20 ㎛). The good soft magnetic properties of the thick FeBSiNb amorphous alloys were attributed to the decrease in surface pinning effect during wall motion, appearance of perpendicular anisotropy and resulted domain refinement.

Performance Evaluation of Hydraulic and Magnetic Clamp Crane for Transporting Curved Steel Plate for Shipbuilding, with Permanent Magnet Applied (영구자석을 적용한 선박용 곡면 철판 이송용 유압식 마그네틱 클램프 이송장치의 성능평가에 대한 고찰)

  • Moon, Byung Young;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.322-330
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was developed to realize a magnetic clamp crane system by simultaneously actuating eight individual hydraulic cylinders. In this approach, an Sr-type of ferritic permanent magnet (SrO· 6Fe2O3), rather than the previous electromagnet, was utilized for the purpose of lifting and transporting the large curved steel plates used for manufacturing ships. This study had the goal of developing and manufacturing a hydraulic, magnetic clamp prototype composed of three main parts, including the base frame, cylinder joint, and magnet joint, in order to safely transport curved steel plates. Furthermore, this research included a performance evaluation of the manufactured prototype and acquired the purposed quantity value in the performance test. The most significant item, the magnetic adhesive force (G), was evaluated in a performance test, which utilized a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc). In particular, relevant items such as the hoist tension (kN), transportation time (s), and applied load (Kgf) on the hydraulic cylinders were also evaluated in order to determine the optimum values.