• Title/Summary/Keyword: 자세결정

Search Result 421, Processing Time 0.027 seconds

THE DESIGN OF DGPS/INS INTEGRATION FOR IMPLEMENTATION OF 4S-Van (4S-Van 구현을 위한 DGPS/INS 통합 알고리즘 설계)

  • 김성백;이승용;김민수;이종훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.351-366
    • /
    • 2002
  • In this study, we developed low cost INS and (D)GPS integration for continuous attitude and position and utilized it for the determination of exterior orientation parameters of image sensors which are equipped in 4S-Van. During initial alignment process, the heading information was extracted from twin GPS and fine alignment with Kalman filter was performed for the determination of roll and pitch. Simulation and van test were performed for the performance analysis. Based on simulation result, roll and pitch error is around 0.01-0.03 degrees and yaw error around 0.1 degrees. Based on van test, position error in linear road is around 10 cm and curve around 1 m. Using direct georeferencing method, the image sensor's orientation and position information can be acquired directly from (D)GPS/INS integration. 4S-Van achieved 3D spatial data using (D)GPS/INS and image data can be applied to the spatial data integration and application such as contemporary digital map update, road facility management and Video GIS DB.

The Effects of Posture and Sleep Deprivation on Heart Rate Variability (자세와 수면 박탈이 심박 변이도에 미치는 영향)

  • Shim, Young-Woo;Yang, Dong-In;Kim, Nam-Hyun;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • Autonomic nervous system (ANS) acts as a control system functioning largely below the level of consciousness, and controls visceral functions. The activity of the ANS has been assessed by means of the heart rate variability (HRV). It has been reported that HRV is dependent on sex, age, body mass index, and smoking, etc. However, the effects of posture and sleep deprivation on HRV have rarely been reported. Objective of our work was to find out which posture is appropriate for stable HRV. We measured the number of sleep deprivation and HRV using power spectrum in six stages for 30 minutes. Increased low frequency (LF) power and high frequency (HF) power indicate enhanced sympathetic and parasympathetic activity, respectively. We determined the LF/HF ratio to minimize individual difference. It was found that sleep deprivation by awakening up subjects was affected by posture, which resulted in changes of LF/HF. Although LF/HF varied with time, it was more stable in sitting than in supine. In conclusion, we recommend sitting posture when measuring HRV because of less sleep deprivation resulting in less variation in LF/HF.

Attitude determination of cubesat during eclipse considering the satellite dynamics and torque disturbance (인공위성의 동역학과 토크 외란을 고려한 큐브위성의 식 기간 자세추정)

  • Choi, Sung Hyuk;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.298-307
    • /
    • 2016
  • Attitude determination of satellite is categorized by deterministic and recursive method. The recursive algorithm using Kalman filter is widely used. Cubesat has limitation for payload to minimize then only two attitude sensors are installed which are sun sensor and magnetometer. Sun sensor measurements are useless during eclipse, however cubesat keeps estimating attitude to complete the successful mission. In this paper, Attitude determination algorithm based on Kalman filter is developed by additional term which considering the dynamics for SNUSAT-1 with disturbance torque. Verification of attitude accuracy of the algorithm is conducted during eclipse. Attitude determination algorithm is simulated to compare the performance between typical method and proposed algorithm. In addition, Attitude errors are analysed with various magnitude of disturbance torque caused by space environment.

REVIEW OF BACK-UP POSSIBILITY ON GYRO ANOMALY OF GEOSYNCHRONOUS SATELLITES USING EXTENDED KALMAN FILTER (확장칼만필터를 이용한 정지궤도위성의 자이로 이상상태 대처 가능성 검토)

  • Park, Young-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.175-186
    • /
    • 2005
  • In this paper, the development of the extended kalman filter(EKF) which is based on Koreasat-3 bus system is introduced and the design result is shown through the simulation. Especially to determine the filter gains for accurate estimation, there is assumed that initial estimated parameters are not changed. But although the satellite performs the attitude control by 2Hz, it is verified that the EKF is running rightly using the changed filter gains. Also some cases are considered using the simulation : with each bias for 4-axis gyro and with gyro each axis failure. It is verified that the designed filter can be used as the back-up about gyro failure.

Vibration-Robust Adaptive Attitude Reference System Using Sequential Measurement Noise Covariance (진동환경에 강인한 순차적 측정 오차 공분산값을 이용한 적응 자세 결정)

  • Kim, Jongmyeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • A new technique for Attitude & Heading Reference System (AHRS) by using sequential measurement noise covariance (SMNC) is addressed in a vibration environments in this paper. In particular, a low-cost inertial measurement unit in general diverges in the acceleration phase or vibrating environments due to inherent properties of gravity and acceleration. In this paper, by considering current and prior measurements to estimate actual attitudes and headings in a local frame, the proposed technique overcomes these problems efficiently. Finally, the performance of the suggested approach is verified by numerical simulations.

Performance Analysis of Self-Alignment in the Temperature Stabilizing State of Inertial Navigation System (관성항법장치 온도 안정화 상태에서의 초기정렬 성능분석)

  • Kim, Cheon-Joong;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.796-803
    • /
    • 2011
  • It is called self-alignment or initial alignment that INS(Inertial Navigation System) is aligned using the measurements from the inertial sensors as an accelerometer and a gyroscope and the inserted reference navigation information in the stop state. The main purpose of self-alignment is to obtain the initial attitude of INS. The accuracy of self-alignment is determined by the performance grade of the used inertial sensors, especially horizontal attitude accuracy by the horizontal accelerometer and vertical attitude accuracy by the E-axis gyroscope. Therefore the uncertain errors in the inertial sensors cause the performance of self-alignment to degrade. In this paper, we analyze theoretically and through a simulation how the errors of inertial sensors in the temperature stabilizing state, one of the uncertain errors, affect the accuracy of self-alignment.