• Title/Summary/Keyword: 자성 센서

Search Result 100, Processing Time 0.023 seconds

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF

Magnetostriction and Magnetic Anisotropy Measurement Using High Efficiency Small EIectromagnet (고능률 소형 전자석에 의한 자왜 및 자기이방성 측정)

  • 이용호;신용돌;김병걸;민복기;송재성
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.179-183
    • /
    • 1994
  • A high efficiency small electromagnet (22 mm air gap and $40{\times}25mm^{2}$ core's cross section) suitable for measuring magnetostriction and magnetic anisotropy was biult. The magnet could be minaturized by reducing the measuring space and time. The excitation current of the electromagnet was supplied for only a few second of measuring time. Cooling system of the electromagnet could be eliminated since the dissipation energy was very small. An 0.5 T magnetic field was generated with 180 W power consumption. The values of magnetostriction and magnetic anisotropy were measured with a very sensitive capacitance cell with resolution of $10^{-8}$ and 1 nJ. The torque was calibrated using a soft magnetic ribbon's shape anisotropy.

  • PDF

A Study on Dipole Modeling Method for Ship's Magnetic Anomaly using Singular Value Decomposition Technique (특이치 분해 방법에 의한 함정 자기원 다이폴 모델링 방안 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.259-264
    • /
    • 2007
  • This paper describes the mathematical modeling method for the static magnetic field signature generated by a magnetic scale model. we proposed the equivalent dipole modeling method utilizing a singular value decomposition technique from magnetic field signatures by magnetic sensors are located special depths below the scale model. The proposed dipole modeling method was successfully verified through comparisons with the real measured values in our non-magnetic laboratory. Using the proposed method, it is possible to predict and analyze static magnetic field distributions at any difference depths generated from the real ships as well as a scale model ship.

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

In(1-x)Al(x)Sb Grading Buffer 기술을 사용한 InSb 박막의 최적화

  • Sin, Sang-Hun;Song, Jin-Dong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.308-308
    • /
    • 2011
  • 6.48 ${\AA}$의 격자 상수를 갖는 InSb 물질은 0.17 eV의 낮은 에너지 밴드갭과 78,000 cm2/Vs의 전자 이동도를 갖는 물질로서 고속의 자성 센서소자, 장파장의 광 검출기 그리고 고속 전자소자 등의 분야에서 많은 주목을 받고 있다. 그러나, 전기적 특성이 우수한 InSb 물질을 소자로 구현하는데 있어서 큰 어려움이 있다. InSb와 격자 크기가 잘 맞으면서 절연이 우수한 기판의 부재가 가장 큰 문제가 되는 부분이다. 즉, 격자 부정합을 최소화하며 동시에 절연기판을 사용함으로써 소자의 특성을 잘 살려야 하는 것이다. 이러한 이유로 인하여 InSb 기반의 소자가 널리 사용되지 못하고 있는 것이다. 현재 범용으로 사용하고 있는 기판은 격자 부정합이 14%인 GaAs, 11%의 InP 그리고 18%의 Si 등이 있다. 이번 발표에서는 GaAs 기판 위에 격자 부정합을 최소화하여 InSb 박막을 최적화 시켜 성장하는 방법에 대해서 소개하고자 한다. InSb 박막 성장하는데 있어 논문으로 보고된 여러 가지 방법들이 있다. 기판과의 격자 부정합을 줄이기 위하여 저온-고온 (L-T)의 의한 메타몰픽(metamorphic) buffer 층을 성장 후 InSb 박막을 성장하는 방법[1] 그리고 단계별 buffer를 성장하는 방법[2] 등을 통해서 많은 진보가 있었다. 하지만, 우리는 GaAs 기판 위에 AlSb 박막을 성장 하면서 동시에 In과 Al의 양을 서서히 변화시키는 grading 기술을 사용하였다. 즉, 물질 각각의 격자상수를 고려하여 GaAs (기판)-AlSb-InAlSb-InSb로 변화를 주어 격자 부정합이 최소가 되도록 하여 만들어진 buffer 위에 InSb 층이 만들어 지도록 하여 GaAs 기판 위에 InSb 박막을 성장 할 수 있었다. grading 기술을 이용하여 만들어진 buffer 위에 성장된 0.3 um의 InSb 박막 층은 상온에서 전자 이동도가 약 38,000 cm2/Vs에 이르는 것을 확인하였다. InSb 박막의 두께가 약 1 um 되어야 30,000 cm2/Vs 이상의 전자 이동도를 얻을 수 있다고 많은 논문을 통해서 보고 되고 있으나 우리는 단지 0.3 um의 InSb 박막두께에서 이와 같은 전기적인 특성을 확인하였기에 이상과 같이 보고 하고자 한다.

  • PDF

Evaluation Methods of Homogeneity for Feedstocks and Effect of Homogeneity on the Magnetic Properties of Plastic Magnets (플라스틱 자석 혼합물의 균질도 평가방법과 균질도가 자기특성에 미치는 영향)

  • 이석희;최준환;문탁진;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.86-92
    • /
    • 1998
  • Homegeneous feedstock is necessary to make plastic magents with uniform magnetic properties, therefore the optrimized mixing route and the homogeneity evaluation method are demanded. In this paper, method of homogeneity evaluation and effect of homogeneity on the magnetic prperites were investigated using Sr-ferrite /EVA plastic magnets. The feedstocks with different homogeneity were prepared using batch mixer and single screw extruder. The homogeneities of feedstocks were tested by torgue sensor, capilary rheometer, and measurement of magnetic properties. Mixing torque measurement using torque sensor was an effective method to determine the critical powder loading, but it was nor suitable to suitable to determine the feedstock mixing quality. Particle alignment measurement of a plastic magent was very accurate to evaluate the homogeneity, but expensive equipments were required to make and measure the samples. Pressure measurement using capillary rheometer was a very effective and easy method with high accuracy. Homogeneous feedstock increased the particle alignment of plastic magnet. Remanet flux density and maximum energy product increased linearly and quadratically with increasing particle alignment, respectively.

  • PDF

The Fabrication and Reproducing Signal Characteristics of Tri-layered Magnetoresistance Element (3층 자기저항소자의 제작 및 재생신호특성)

  • 김용성;노재철;박현순;서수정;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.231-240
    • /
    • 1998
  • We investigated that the fabrication and reproducing signal characteristics of tri-layered magnetoresistance (MR) element for the high density magnetic thin film heads and sensors. Magnetoresistance curve of tri-layered MR element predicted by computer modeling was saturated above external field of -15 Oe~+22 Oe, and it was shifted to linearized region as large as 4 Oe. In the case of fabricated real device, magnetoresistance curve was saturated above external field of $\pm$15 Oe, and it was shifted to linearized region as large as 4 Oe. As shown in real device, MR response curve was in good agreement with the simulation results. As a result of experimental data of reproducing output signal in real device, it retained normal sinusoidal waveforms in 1~4 Oe external magnetic field. In this magnetic field region, the fabricated heads with tri-layered MR element can be operated with good reproduced characteristics. This will be beneficial to the use of efficient processes of manufacturing elements and the vacuum deposition techniques which control thin film properties.

  • PDF

High Frequency Impedance of Meander Pattern Fabricated by Co-base Amorphous Ribbon (Co계 아몰퍼스리본을 이용하여 제작한 마안더패턴의 고주파 임피던스특성)

  • Shin, Kwang-Ho;Park, Kyung-Il;Geon, Sa-Gong;Song, Jae-Yeon;Kim, Young-Hak
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.160-164
    • /
    • 2003
  • The external magnetic field dependency of the impedance, resistance, and inductance of the meander pattern fabricated by using Co-base amorphous ribbon has been investigated in the frequency range of 300 ㎑∼1 ㎓. The amorphous ribbon was patterned to the meander pattern through conventional photolithography and wet etching process. The extremely high sensitivity in impedance changing ratio by external magnetic field was observed. This is due to the transverse magnetic anisotropy the pattern which was induced by magnetic field annealing. The impedance had peak value at the external field of -13 Oe and the impedance changing ratio 100 ${\times}$ (Z$\_$13/-Z$\_$0/)/Z$\_$0/) was about 210% at the frequency of 50 MHz.