Proceedings of the Korean Operations and Management Science Society Conference
/
2008.10a
/
pp.314-318
/
2008
퇴직연금에서 DB(defined benefit, 확정급여형) 플랜 가입자는 은퇴 이후의 급여가 확정되는 반면, DC(defined contribution, 확정기여형) 플랜 가입자는 납입금액만 확정될 뿐미래의 급여는 보장되지 않는다. 따라서 DC 플랜 가입자는 가입기간 동안 적절한 투자전략을 통하여 연금자산이 최대로 성장할 수 있도록 노력해야 한다. 그러나 자산가격은 시장 위험에 노출되어 있기 때문에 자산배분은 퇴직시점에 접근할수록 안전자산 위주로 전환되어야 한다. 라이프사이클 자산배분모형과 라이프사이클포트폴리오는 최신의 운용기법으로 그 유용성을 인정받고 있지만, 기계적이고 직관적인 방법으로 인하여 이론적인 근거에 취약성을 가지고 있다. 본 연구에서는 DC 플랜 가입자의 안정적인 자산관리를 위한 라이프사이클을 고려한 자산배분모형을 제시하고자 한다. 시뮬레이션 최적화 방법을 활용한 자산배분의 경우, 채권의 비중은 주식의 누적수익률 열세와 변동성으로 인하여 비조건부 자산배분과 주식에 대한 최저 투자비중을 고려한 조건부 자산배분에서 우세하게 나타나고 있다. 그러나 두 자산배분모형의 성과는 장기적으로 차이를 보이다가 기간이 축소되면서 차이가 크게 줄어드는 것으로 분석되었다.
전략적 자산배분에서 가장 중요한 것은 목표를 결정하는 것이다. 여기서 목표는 자산운용에서 발생하는 향후 포트폴리오의 예상되는 분포와 이에 영향을 받는 조직의 기대효용을 극대화하는 것으로 정의하는 것이 과학적이고 학술적인 방식이다. 실무는 대체로 이러한 방식과 다르다. 예를 들어 기금운용평가의 가이드라인에서는 목표 수익률에 초점을 두고 있다. 특히 기금운용평가에서는 ALM 기반의 목표 수익률 산출을 제안한다. 하지만, 비현실적인 목표 수익률의 산출과 그 의미의 모호성으로 많은 기금들은 이를 적용하지 않고 있다. 본 연구는 이러한 ALM 기반의 목표수익률 설정 및 자산배분의 문제점을 확인하고, ALM 기반 자산배분에 대한 두 가지 대안을 제시한다. 첫 번째, 기금 자산운용의 목표 설정에 대해서는 Doran(1981)의 SMART (Specific, Measurable, Achievable, Relevant, Time-limited) 기준에 따른 목표수립을 제안한다. 두 번째, 목표 수익률 산출에서는 목표기반투자 (Goal based Investing, GBI) 에 따른 목표 수익률 산출 방법을 제시한다.
Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.
To improve the financial stability of the National Pension, an appropriate target rate of return should be established based on pension liabilities, and asset allocation policies should be formulated accordingly. The purpose of this study is to calculate the target rate of return considering the contributions of subscribers and the pension benefits, and based on this, derive an asset allocation. To do this, we utilized the internal rate of return methodology to calculate the target rate of return for each cohort. And then, we employed a Monte Carlo simulation-based re-sampling mean-variance model to derive asset allocation for each cohort that satisfy the target rate of return while minimizing risks. Our result shows that the target rate of return for each cohort ranged from 6.4% to 6.85%, and it decreased as the generations advanced due to a decrease in the income replacement rate of the National Pension. Consequently, the allocation of risky assets, such as stocks, was relatively reduced in the portfolios of future generations. This study holds significance in that it departs from the macroeconomic-based asset allocation methodology and proposes investments from an asset-liability management perspective, which considers the characteristics of subscribers' liabilities.
This study calculates the employee receives severance pay scale are paid from the company in the DC system. In addition, by utilizing the reserve growth model were studied in accordance with shortfall risk levels generated by stochastic asset allocation. For the analysis, from 2004 to 2013 using the KOSPI returns and total bond yields were simulated. Scenario 1 is when compared to the severance reserve is insufficient. Scenario 2 is the same as if toy reserve this severance pay. During one period, depending on the asset allocation of stocks and bonds was confirmed that the probability pension risk does not occur. And we suggest that members of DC pension risk endeavor with the government and companies to avoid.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.439-441
/
2020
기존의 균등배분, 마코위츠, Recurrent Reinforcement Learning 방법들은 수익들을 최대화하거나 위험을 최소화하고, Risk Budgeting 방법은 각 자산에 목표 리스크를 배분하여 최적의 포트폴리오를 찾는다. 그러나 이 방법들은 미래의 최적화된 포트폴리오를 잘 찾아주지 못하는 문제점들이 있다. 본 논문은 자산 배분을 위한 Deterministic Policy Gradient 기반의 Actor Critic 모델을 개발하였고, 기존의 방법들보다 성능이 우수함을 검증한다.
This study aims to propose an optimal asset allocation that minimizes the risk of insufficient realized replacement rates compared to the OECD average replacement rate. To do this, we set the shortfall risk of replacement rates and calculates an asset allocation plan to minimize this risk based on the period of enrollment, the income level and additional contribution. We consider stocks and deposits as investment assets, using Monte Carlo simulation with a GBM model to generate return distributions for stocks. Our result show that, for individuals with a enrollment period of less than 30 years, participants should invest a minimum of 70-80% of their funds in risky assets to minimize the shortfall risk. However, the proportion of funds that need to be invested in risky assets declines significantly when participants contribute an additional premiums. This effect is particularly pronounced among low-income individuals. Therefore, to achieve OECD average replacement rates, the government needs to incentivize participants to invest more in risky assets, while also providing policies to encourage additional contributions, especially for the low-income population.
Based on the importance of asset allocation in the return of an investment portfolio, this article attempts to verify the appropriateness of mutual funds as means of investment to obtain optimal asset allocation. The return-based style analysis is applied to determine a mutual fund's allocation(or a style) among a set of specified asset classes. Assuming a particular investor who defines a range allowed a fund's style to differ from its original one, it is examined whether or not the fund style is continued over an investment time horizon. After verifying the fact that the original style of the investment fails to remain unchanged from the empirical analysis limited to domestic equity mutual funds, we further investigated the reasons for the style drift. Despite several limitations of the analysis, it yields the conclusion that domestic equity mutual funds do not seem to be an appropriate investment tool to achieve a target asset allocation.
본 연구에서는 비정상적 사건을 정의하고 이에 따른 비정상적 위험의 구체적인 유형을 파악하며, 이와 관련된 사학연금의 위험관리 체계에 대한 검토와 함께 비정상적 위험에 효과적으로 대응할 수 있는 자산운용방안을 제시하였다. 우선 비정상적 사건을 '과거 자료를 이용한 발생확률의 추정이나 발생여부에 대한 예측이 불가능하며 따라서 이의 발생 가능성을 사전에 고려하고 대비하는 사전적인 대처가 어려운 사건으로서 자산운용과 위험관리에 무시할 수 없는 영향을 미치는 사건'으로 정의하였으며, 이의 구체적인 형태로서 금융위기를 포함하는 9가지 사건 유형을 파악하였다. 동비정상적 사건들은 포트폴리오 투자를 통한 자산운용에서 개별자산군의 기대수익률과 위험 및 자산군 사이의 상관관계에 영향을 미쳐, 기존의 자산배분안의 최적성을 상실시키고 위험수준의 측정치인 VaR값을 과소 또는 과대추정하게 할 수 있는 것으로 분석되었다. 한편 비정상적 사건의 해외 사례에 대한 분석에서는 비정상적 사건의 영향이 개별 사건마다 다양한 양태로 발현되는 것이 관측되었다. 본 연구에서는 사학연금의 현행 자산배분 체계가 이와 같은 비정상적 사건의 영향에 적절하게 대응하기 어려운 상황이라고 진단하였으며, 비정상적 사건에 적절히 대응하기 위한 자산관리방안의 일환으로서 일별 수익률 자료를 사용한 비정상적 사건의 영향 평가방안을 제시하였다. 한편, 사학연금의 현행 위험관리 체계는 비정상적 사건의 발생에 적절하게 대응할 수 있는 것으로 평가되었다
사학연금재정재계산위원회(2016)에 의하면 사학연금제도는 2027년에 기금규모가 최고로 도달한 후, 다음 해 부터는 재정수지가 적자로 전환되어 2046년에 기금이 완전히 고갈될 것으로 전망되고 있다. 그래서 동 제도의 지속가능성을 위한 연금재정의 안정화 대책이 시급하다. 현재 상황에서 사학연금제도의 지속가능성에 대한 연구는 자산운용을 효율화하여 기금고갈시점을 최대한 연기하고, 동 기간 공무원연금제도의 개혁과 연계한 지속가능성을 모색하는 방안이 최선의 방안이다. 지금까지 사학연금은 해외투자나 대체투자 등 다양한 자산배분 포토폴리오를 설계 운용하여 왔는데, 대체투자로는 높은 수익률을 실현하여 왔으나 해외투자 수익률은 기대에 미치지 못하였다. 국내외 연기금들 중 지난 6년간 가장 높은 단순 수익률을 실현한 CPPIB의 수익률을 사학연금재정재계산위원회가 사용한 연금재정재계산 수익률에 적용하여 추계한 연금재정은 2044년 기금최고시점에 이르렀고, 2045년부터 재정수지가 음(-)으로 변하여 2060년부터 기금이 완전히 고갈될 것으로 전망되었다. 그리고 사학연금의 운용성과가 미흡한 주식투자 수익률을 국민연금 주식투자 수익률로 적용하였을 경우, 사학연금재정재계산위원회 추계 결과와 비슷한 기금최고시점 및 기금고갈시점을 보였다. 글로벌 경제가 저성장 저금리 기조로 들어서고 있는 이 시점에서, CPPIB가 지난 6년간 실현한 높은 수익률을 중장기에 지속적으로 기대하기는 어렵다. 그래서 사학연금기금을 최대한 유지하기 위해서는 다양한 투자대상을 개발함과 동시에 CPPIB의 자산배분 포토폴리오와 포토폴리오 변동성 및 기대수익률을 통제할 수 있는 수리모형을 도입하고, 국민연금의 주식투자 운용원칙 및 기준을 벤치마킹하여 자산배분을 효율화하여야 한다. 이와 동시에 향후 공무원연금제도 개혁 과정에서 사학연금제도의 지속가능성을 반영할 수 있는 방안에 대한 연구가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.