• Title/Summary/Keyword: 자분탐상시험

Search Result 7, Processing Time 0.019 seconds

Introduction to nondestructive testing

  • 정용무
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 1994
  • 이 글에서는 비파괴검사개론에 관하여 알아보았다. 1. 비파괴검사의 의의 1.1 비파괴검사의 역사 1.2 비파괴검사의 원리 1.3 비파괴검사의 목적과 역할 1.3.1 품질관리 1.3.2 생산원가의 절감 1.3.3 품질의 평가 1.3.4 점검 1.4 비파괴검사자의 역할 2. 비파괴검사자의 방법 2.1 방사선투과시험 2.1.1 직접촬영법 2.1.2 투시법 2.1.3 전자사진법 2.1.4 계기법 2.2 초음파탐상시험 2.2.1 음향검사와 초음파탐상 2.2.2 초음파의 성질과 종류 2.2.3 접촉매질 2.2.4 초음파 탐상 방법 2.2.5 초음파 탐촉자 2.3 자기탐상시험 2.3.1 자기탐상 원리 2.3.2 자기탐상 방법 1) 자장측정 탐상법 2) 자기기록 탐상법 3) 탐사 코일법 4) 자분탐상시험 2.3.3 자분탐상시험 2.4 침투탐상시험 2.4.1 침투탐상시험의 원리 2.4.2 침투탐상시험법의 기본 1) 침투탐상시험의 종류 2) 현상체의 종류 2.4.3 침투탐상시험의 장단점 2.5 전자유도시험 (와전류탐상법) 2.5.1 와전류의 발생과 탐지 2.5.2 와전류의 탐지 2.5.3 와전류 탐촉자 2.5.4 와전류 탐상시험의 적용과 장단점.

  • PDF

Method of Radiographic Testing and Industrial Application (방사선 투과검사의 방법과 산업적용)

  • Lee, Yong
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 1994
  • 비파괴검사(NDT)란 시험품에 손상을 주지 않고 내.외부에 존재하는 불연속부(결함)을 찾아내는 방법으로 다음과 같이 그 종류를 분류할 수 있다. (1) 표면결함 검출을 위한 비파괴검사 - 육안검사(VT) : 확대경 등에 의한 치수, 형상확인 - 자분탐상검사(MT) : 강자성체에 적용, 표면(하) 결함검출 - 침투탐상검사(PT) : 금속, 비철금속에 적용, 표면개구 결함검출 - 와류탐상검사(ET) : 도체 표층부(봉, 관 등) (2) 내부결함 검출을 위한 비파괴검사 - 방사선 투과검사(RT) : 결함의 종류, 형상의 판별 우수 - 초음파 탐상검사(UT) : 균열 등 면상 결함검출 등 우수 (3) 기타 비파괴검사 - Strain 측정 : 안전성 평가 - 음향방출시험(AET) - 누설시험(LT) - 중성자 방사선시험(NRT) 이상에서 보는 바와 같이 여러 종류의 비파괴검사가 있으나, 그 중에서 용접부에 적용되는 가장 일반적인 검사방법인 방사선 투과검사에 대해 기술하고자 한다.

  • PDF

Evaluation of Mechanical Test Characteristics of Fillet Welding (필릿 용접의 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun;Rhim, Jong-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • FCAW is used mainly in the welding of carbon steel and alloy steel because it can be welded in all positions and can obtain excellent quality at sites with variable working conditions. Recently, many studies in Korea have estimated the fatigue strength, residual stress, and deformation, and to develop a fillet welding process. On the other hand, there have been few studies of the mechanical properties based on the strength, macro and magnetic particle test results for fillet welding. This study shows the following results through fillet welding, macro testing and strength testing using SM490A (solid-structure rolled steel) for thick plates using SS400 (rolled steel) for the upper plate and FCAW. The hardness test, macro test and magnetic particle test were then conducted. The hardness tests showed that all result values were smaller than the KS B 0893 standard values of 350Hv. The macro-test showed that each type of welded part was in a normal organic state and that there were no internal errors, bubbles, or impurities on the front of the welded part. Therefore, there were no concerns about lamination. The magnetic particle examination showed no problems.

A Study on Transverse Cracking and Fatigue Properties of 50mm Thick FACW Weld Metal ; Effects of Preheating and Interpass Temperature (FCAW 50t 후판용접에 있어 예열 및 층간온도 변화에 따른 횡크랙 발생과 피로특성에 관한 연구)

  • 이해우;강성원
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.56-64
    • /
    • 1997
  • Macrostructural characteristic of the transverse cracks and fatigue behavior were studied for EH 32 TMCP 50mm thick plate welded with FACW under the variation in preheat and interpass temperatures. Transverse cracks were detected in specimen welded with preheat and interpass temperature below $30^{\circ}C$, but cracks were not detected in the specimens welded with preheat and interpass temperatures at the range of $100~120^{\circ}C$.C. The location of crack formation was found to strongly depend upon the thickness of weld layers as regard to the plate thickness.

  • PDF

A study on appropriate nondestructive inspection methods of gear units for rolling stock (전동차 대치차 기어의 적절한 탐상법에 관한 연구)

  • Lee, Jae-Il;Lee, Min-Yeol;Lee, Won-Hak;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.571-582
    • /
    • 2010
  • Typically nondestructive inspection methods of the large gear units are applied to penetrate non-destructive inspection. Nondestructive penetrating inspection put into the small openings of the defect to penetration liquid, remove to excess penetration liquid on the surface of the gear units, spread with developing solution and we can find the small defect by coating with penetration liquid. However, this method has so many issues because of penetrate nondestructive tests on the gear assembly. The steep angle of screw is hard to achieved full penetration and has the problem to remove the excess. In contrast, the magnetic nondestructive inspection is easy to detect subsurface defects and subtle defects. According to the inspection results the stress concentrates in gear surface, some internal defects and microscopic flaws exist on the gear units are not found to penetrate the nondestructive inspection, but magnetic nondestructive inspection could have found many defect. Therefore, a reasonable method of nondestructive inspection for the large gear units is suitable to magnetic nondestructive inspection.

  • PDF

A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding (SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구)

  • Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.88-93
    • /
    • 2021
  • SAW (Submerged Arc Welding) is often used for ship construction or welding pressure vessels and involves spraying a flux in a powder form to a welding site to a certain thickness and continuously supplying electrode wires therein. This welding method enables high current welding up to 1,500 to 3,000 A. Arc efficiency is higher than 95% and the technique allows clean work as it creates less welding fume, which is composed of fine metal oxide particles, and the arc beam is not exposed. In this study, SM490C-TMC thick plates were heterogeneously welded by SAW. Mechanical properties of welds were measured, and welds were assessed macroscopically and for adhering magnetic particles. The following conclusions were drawn. Bending tests showed no spots exploded on sample surfaces or any other defect, and plastic deformation testing confirmed sufficient weld toughness. These results showed the 1F welding method has no shortcomings in terms of bending performance.