• Title/Summary/Keyword: 자립항법

Search Result 4, Processing Time 0.017 seconds

A Study on the Characteristic Analysis of the Gyro Sensor and Development of Hybrid Navigation Algorithm for the Car Navigation (차량 항법용 자이로 센서의 특성분석 및 혼합항법 알고리즘 개발에 관한 연구)

  • 김상겸;유환신;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.171-179
    • /
    • 2004
  • Today, the number of vehicle increased rapidly with the development of modem science technology, and it caused serious problems; traffic jam, accident and pollution etc. One of the solve methods these problems it is necessary to develope the vehicle navigation systems and it is already widely used to in field of military etc. Vehicle navigation system can increase the efficiency of traffic flow and offer at a drivers at a best driving conditions. In the vehicle navigation, most important thing is to measure of correct position. There are classifiable as three types. The first is G.P.S., method at artificial satellites which measures the present position and velocity any time, any where in the world at the same time. Secondly, a vehicle can determine its position and path information with a gyroscope and odometer signal, which is called Dead-Reckoning method. Thirdly, hybrid navigation system is the combined of two methods to make utilize the advantage of each navigation system. In the paper, we are analyzed to characteristics at a gyro sensor and introduce at a composition of hybrid navigation system which is combined with the G.P.S., D.R., and map-matching technique. We analyze deeply for the Map-Matching method and explain the coordinate transformation for G.P.S., and the Hybrid navigation algorithm is developed and experimented. Finally, we conclude and comment about our road test results.

Revising the DR (Dead-Reckoning) Angles Data Using Steering Wheel Sensor and Gyro Sensor (Telematics System 자립항법에서 Gyro Sensor를 이용한 Steering Wheel Angle Data 보정)

  • Park, Jin-Sup;Chung, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.149-150
    • /
    • 2007
  • By adding Gyro sensor to support the steering wheel angle sensor, an improved functional DR solution is proposed in this paper The proposed angle data algorism is developed based on the steering wheel with Gyro sensor for DR. The Gyro sensor support the error of steering wheel sensor to improve the angle data for the DR algorism.

  • PDF

A Stability Improvement of Spacecraft by Inertial Sensor Using Gyro Principle (자이로 원리를 응용한 관성센서에 의한 비행체의 안정성 향상)

  • 정인성;이기형
    • Journal of the KSME
    • /
    • v.34 no.7
    • /
    • pp.546-557
    • /
    • 1994
  • 원격 조정식 비익체(이하 RPV : Remoteloted Vehicle)의 안정성을 향상시키고 조정을 간략화하기 위하여 사용되고있는 관성센서에 관해서 알아본다. 관성센서의 기본 원리는 뉴톤의 운동 제3 법칙인 관성의 법칙이고, 특징은 외부 측정기준을 필요로 하지 않은 점에 있으므로, 관성센서를 탐재한 RPV는 공중에서 운동 상태를 외부의 정보 없이 검토할 수 있다. 실제적으로 기계용으로 실용화되고 있는 센서는 관성항법장치(INS:Inertial Navigation System)라고 불리워지는 매우 고급자립형 장치로부터 자이로 컴파스로 불리워지는 방위 자이로와 자기 방위 센서를 조합한 방법까지 여러 가지가 있지만, 여기에서는 산업용 소형 RPV의 크기, 가격 및 입수성에서 이용이 가능하다고 생각되는 센서를 중심으로 원리, 종류 및 응용예를 설명한다.

  • PDF

Map Matching Algorithm for Self-Contained Positioning (자립식 위치측정을 위한 Map Matching 알고리즘)

  • Lee, Jong-Hun;Kang, Tae-Ho;Kim, Jin-Seo;Lee, Woo-Yeul;Chae, Kwan-Soo;Kim, Young-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.213-220
    • /
    • 1995
  • Map Matching is the method for correcting the current position from dead reckoning in Car Navigation System. In this paper, we proposed the new map matching algorithm that can correct the positioning error caused by sensors and digital map data around the cross road area. To do this, first we set the error boundary of the cross road area by combining the relative error of moving distance and the absolute error of road length, second, we find out the starting point of turning within the determined error boundary of the cross point area, third, we compare the turning angle of the car to the angle of each possible road, and the last, we decide the matched road. We used wheel sensor as a speed sensor and used optical fiber gyro as a directional sensor, and assembled the sensors to the notebook computer. We testified our algorithm by driving the Daejeon area-which is a part of south Korea-as a test area. And we proved the efficiency by doing that.

  • PDF