• Title/Summary/Keyword: 자료분류

Search Result 5,240, Processing Time 0.043 seconds

An Analytical Study on Research Trends of Resource Organization in Korea : 1970~2010 (한국의 자료조직 분야 연구동향 분석 : 1970~2010)

  • Kim, Jeong-Hyen
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.3
    • /
    • pp.149-164
    • /
    • 2011
  • This study is to represent the research trends of the resource organization in Korea through the analysis of 607 papers related with resource organization in 4,015 papers on journals of 6 library & information science societies from 1970 through 2010. The results of this study are as follows. The average yearly papers in the case of academic journals published 14.8 pieces. The year published the largest number of papers: 2005 and 2009. The order of the number of papers by the domain of resource organization: cataloging, classification, indexing and abstracting, metadata, subject analysis. And the research on basic principle or theory in the resource organization showed insufficient. The research on KDC classification, cataloging rule, metadata element has are usually presented for improvements. But most of the research is not empirical analysis or objective assessment but subjective judgments of the researchers.

The Detection of Unreliable Data in Survey Database (조사자료 데이터베이스의 허위 잠재 가능성 분류군 탐지)

  • Byon, Lu-Na;Han, Jeong-Hye
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.657-662
    • /
    • 2005
  • The Non-Sampling Error can happen any time by means of the intended or unintended error by the interviewer or respondent, but it is very difficult to find the error in survey database because it can hardly be computed mathematically and systematically. Until now, we have found it accidentally through the simple relation between the items or through the inspection from the random field. Therefore we introduced an heuristic methodology that can detect the interviewer's error by statistical decision-making or data mining techniques with a case study. It will be helpful so as to improve the statistical duality and provide efficient field management for the supervisor.

A Study on the Mapping of Wind Resource using Vegetation Index Technique at North East Area in Jeju Island (영상자료의 식생지수를 이용한 제주 북동부 지역의 풍력자원지도 작성에 관한 연구)

  • Byun, Ji Seon;Lee, Byung Gul;Moon, Seo Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • To create a wind resource map, we need a contour map, a roughness map and wind data. We need a land cover map for the roughness map of these data. A land cover map represents the area showing similar characteristics after color indexing based on the scientific method. The features of land cover is classified by Remote sensing technique. In this study, we verified the application of the NDVI technique is reasonable after we created the wind resource map using roughness maps by unsupervised classification and NDVI technique. As a result, the wind resource map using the NDVI technique showed a 60% accordance rate and difference in class less than one. From the results, The NDVI technique is found alternative to create roughness maps by the unsupervised classification.

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

Comparative study of class and division classification for the civil engineering field in a library classification system (토목공학분야 문헌정보분류법의 류.강체계 비교분석)

  • 강인석
    • Journal of the Korean Society for information Management
    • /
    • v.14 no.2
    • /
    • pp.105-122
    • /
    • 1997
  • A library for the civil engineering field goes on increasing in quantity because of the growth in construction technology and the enlargement in applicable fields of civil engineering. Most of libraries and information centers in construction companies are using Dewey Decimal Classification (DDC) or Korean Decimal Classification (KDC) to classify a library in civil engineering field. It is necessary for the library classification system to be equipped with a more standardized code system, which corresponds to the academical and technical classification for the civil engineering works. This study analyzes the defects of existing classification systems, and then suggests a new classes and divisions classification system, which facilitates to link academic information with technical data, for the civil engineering field. The proposed system is expected to make practical application of information classification system in the construc ion industry and to be applied for the revised edition of KDC.

  • PDF

분포함수 기반 Mass 함수 추정을 통한 Dempster-Shafer 영상융합

  • Lee Sang-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.311-314
    • /
    • 2006
  • 본 연구에서는 서로 다른 센서간의 영상 자료 융합을 위하여 Dempster-Shafer 기법을 제안하고 있다. 제안 된 Dempster-Shafer 기법은 불확실성의 최소 값을 대표하는 Belief 함수와 불확실성의 최대 값을 나타내는 Plausibility 함수를 사용한다. 이러한 두 함수의 차이는 Belief Interval 로 정의되며 이 값은 분석 대상에 존재하는 불확실 정도의 Measure 로 사용되며 Evidence Combination의 이론에 근거하여 서로 다른 센서간의 자료 융합이 가능하며 분류 결과로 클래스 맵 뿐 만 아니라 분류 결과에 대한 불확실성 정도를 나타내는 Belief 함수 값과 Plausibility 함수 값을 생성하여 분류 결과에 대한 보충적인 분석을 가능하게 하여 사용자의 분석 정확성을 증대 시킬 수 있다.

  • PDF

공간 지역 확장과 계층 연결 기법을 이용한 무감독 영상 분류

  • 이상훈
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.25-33
    • /
    • 2001
  • 본 연구는 무감독 영상 분류를 위하여 지역 확장 영상 분할과 계층 연결 영상 분류를 포함하는 다중 단계 기법을 제안하고 있다. 모의 자료를 사용하여 제안된 알고리듬 대한 평가와 효율성에 대한 검증을 하였다.

  • PDF

Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz) (다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구)

  • Park, Yo-Sup;Lee, Sin-Je;Seo, Won-Jin;Gong, Gee-Soo;Han, Hyuk-Soo;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2008
  • In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.

ILD Vehicle Classification Algorithm using Neural Networks (신경망을 이용한 루프검지기 차종분류 알고리즘)

  • Ki Yong-Kul;Baik Doo-Kwon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.489-498
    • /
    • 2006
  • In this paper, we suggested a vehicle classification algorithm using pattern recognition method. At present, Inductive Loop Detector is rarely used for vehicle classification because of its low accuracy. To improve the accuracy, we suggest a new algorithm for Loop Detector using neural networks. In the developed algorithm, the inputs to the neural networks are the variation rate of frequency and occupancy-time. The output is classified vehicles. The developed algorithm was assessed at test sites and the recognition rate was 91.3percent. The results verified that the proposed algorithm improves the vehicle classification accuracy compared to the conventional method based on Loop Detector.

A Study on the Development of an Integrated Classification System for Archives of May 18th Democratic Uprising (5·18민주화운동 기록물 통합분류체계 개발 연구)

  • Park, Seong-Woo;Jeong, Dae-Keun
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.373-403
    • /
    • 2017
  • The purpose of this study is to establish the classification principle of archives for the May 18th democratic uprising in terms of preservation and utilization of it and to develop an integrated classification system for it. For this purpose, it was carried out by the previous research on the classification of records and institutional case analysis. Also, we developed an integrated provenance-based classification system based on the practical analysis on the data held in 3 representative institutions in Gwangju. This classification system was proposed by facets of 'provenance-material-period-media-subject' type. We also proposed the collection-based integrated classification system that reflects on the expansion of archivists' role and the trend of times.