• 제목/요약/키워드: 자료결측

검색결과 305건 처리시간 0.023초

불완전한 짝자료에 대한 검정법 (Tests for Incomplete Paired Data)

  • 이승묵;박진경;박태성
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.415-432
    • /
    • 1999
  • 짝자료(paired data)에서 결측값이 발생했을 때에 이 자료를 처리할 수 있는 여러통계검정 방법들을 고찰해보았다. 결측값들을 어떻게 처리하는 지에 따라서 다섯 가지 방법으로 분류해 보았고, 이 방법들이 짝 t-검정에 미치는 효과를 모의실험을 통해 비교해 보았다. 결측값들에 대한 세 종류의 메카니즘을 고려하여 검정크기와 검정력을 구하였다.

  • PDF

시계열자료에서 결측치 추정방법의 비교 (The Comparison of Imputation Methods in Time Series Data with Missing Values)

  • 이성덕;최재혁;김덕기
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.723-730
    • /
    • 2009
  • 시계열의 결측값은 미지의 모수로 취급될 수 있으며 최대우도방법 또는 확률변수방법에 의해 추정할 수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할 수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 ARMA 모형을 적용하여 두 가지 추정방법인 최대우도추정방법과 확률변수방법을 이용해 결측값을 대체하는 방법을 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001${\sim}$2006년 동안의 월별 Mumps 자료를 이용하여 앞의 두 가지 추정방법을 예측오차제곱합(SSF)을 구하여 비교한다.

다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간 (Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN)

  • 신용탁;김동훈;김현재;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.109-118
    • /
    • 2022
  • 정점 표층 수온 관측 데이터 중 결측 구간의 데이터를 양방향 순환신경망(Bidirectional Recurrent Neural Network, BiRNN) 기법을 이용하여 보간하였다. 인공지능 기법 중 시계열 데이터에 일반적으로 활용되는 Recurrent Neural Networks(RNNs)은 결측 추정 위치까지의 시간 흐름 방향 또는 역방향으로만 추정하기 때문에 장기 결측 구간에는 추정 성능이 떨어진다. 반면, 본 연구에서는 결측 구간 전후의 양방향으로 추정을 하여 장기 결측 데이터에 대해서도 추정 성능을 높일 수 있다. 또한 관측점 주위의 가용한 모든 데이터(수온, 기온, 바람장, 기압, 습도)를 사용함으로써, 이들 상관관계로부터 보간 데이터를 함께 추정하도록 하여 보간 성능을 더욱 높이고자 하였다. 성능 검증을 위하여 통계 기반 모델인 Multivariate Imputation by Chained Equations(MICE)와 기계학습 기반의 Random Forest 모델, 그리고 Long Short-Term Memory(LSTM)을 이용한 RNN 모델과 비교하였다. 7일간의 장기 결측에 대한 보간에 대해서 BiRNN/통계 모델들의 평균 정확도가 각각 70.8%/61.2%이며 평균 오차가 각각 0.28도/0.44도로 BiRNN 모델이 다른 모델보다 좋은 성능을 보인다. 결측 패턴을 나타내는 temporal decay factor를 적용함으로써 BiRNN 기법이 결측 구간이 길어질수록 보간 성능이 기존 방법보다 우수한 것으로 판단된다.

임상시험에서 이분형 결측치 처리방법의 비교연구 (Comparison of binary data imputation methods in clinical trials)

  • 안구성;김동재
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.539-547
    • /
    • 2016
  • 임상시험에서 흔히 발생하는 결측치 중 이분형 결측치에 대한 논의를 하였다. 본 논문에서는 결측치가 발생하는 기재를 논의하고 기존의 여러 이분형 결측치 대체 방법과 수정된 결측치 대체방법을 소개하였다. 이후 각 결측치 대체 방법을 실제 자료에 적용하여 모의 실험을 진행하였다. 실제 자료의 성격 및 결측률의 변화에 따른 결측치 대체 방법들의 성능비교를 통해 진행하였다. 마지막으로 각 결측치 대체 방법에 대한 모의 실험 결과를 요약하고 토의하였다.

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

불완전 순위 자료를 위한 몬테칼로 임의순열 검정 (Monte Carlo Random Permutation Tests for Incompletely Ranked Data)

  • 허명회;최원
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.191-199
    • /
    • 2001
  • 본 소고는 n명의 심사자가 k개의 객체를 평가하여 얻어진 불완전 순위자료에서 객체간 선호도에 있어 차이가 없다는 영가설을 검정하는 방법에 관한 연구이다. 주어진 자료에서 결측값들을 다중대체하는 방식을 제안하고 이들을 평균 p-값으로 묶는 몬테칼로방식의 임의순열 검정을 제안한다.

  • PDF

군집화 및 특성도를 이용한 결측치 대체 방법 (Imputation method for missing data based on clustering and measure of property)

  • 김성현;김동재
    • 응용통계연구
    • /
    • 제31권1호
    • /
    • pp.29-40
    • /
    • 2018
  • 데이터를 수집함에 있어 여러 가지 이유로 결측이 발생하게 된다. 결측치는 분석 및 결과에 적지 않은 영향을 미치므로, 이를 해결하기 위해 결측치를 처리하는 다양한 방법들이 연구되었다. 반복 측정 자료에서 초기 시점의 측정값이 어떠한지에 따라서 뒤의 시점 측정값이 어느 정도 영향을 받을 수도 있을 것으로 생각된다. 하지만 기존 방법에서는 이러한 개념을 이용한 결측치 대체가 없었으므로 본 연구에서는 반복 측정 자료에서 초기 시점을 이용한 군집화 및 Kim과 Kim (2017)이 제안한 특성도를 이용하여 새로운 결측치 대체 방법을 제안하였다. 또한 여러 반복 측정 자료를 이용하여 Monte Carlo 모의실험을 통하여 기존 결측 대체 방법과 제안 방법의 여러 대체 성능을 비교해 보았다.

부분관측된 유량자료의 연속 일유량자료로 확장법 (Extension Techniques of Partially Recorded Stream-flow to Continuous Daily Data)

  • 백경오;임동희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.397-397
    • /
    • 2011
  • 2004년부터 4대강 물환경연구소는 수질오염총량관리제의 원활한 추진을 위해 총량관리단위유역 말단부에서 8일 간격으로 청천(晴天)시를 중심으로 유량과 수질을 동시에 측정하기 시작하였다. 그 결과 연중 하천유량과 수질의 연동 여부 및 변동 추이를 확인하는 것이 가능하게 되었다. 그러나 8일 간격으로 생산되는 유량은 지침의 정의와 맞물려 기준유량의 산정에 또 다른 어려움을 주고 있다. '한강수계 오염총량관리계획수립 지침'에 따르면 '기준유량은 과거 10년간 평균 저수량으로 한다'고 명시되어 있다. 여기서 저수량이란 유량의 크기를 누가일수로서 표시하여 1년을 통하여 275일은 이보다 더 작지 않은 유량으로 정의된다. 따라서 정확한 저수량을 산정하기 위해서는 1년 365개 매일의 유량자료가 필요하다. 하지만 8일 간격으로 유량을 측정하게 되면 1년 365개 대신 최대 45 여개의 일 유량자료만 취득 가능하므로 유황분석에 어려움이 발생할 수밖에 없다. 본 연구에서는 수질오염총량관리단위유역의 말단부에서 8일 간격으로 계측된 유량자료가 있을 때 이를 연속적인 일유량으로 확대할 수 있는 방법론 중 하나를 소개한다. 미 지질조사국(USGS)에서 주로 사용되는 이 방법은 A지점(부분계측이 이루어지는 지점)의 결측치를 동일 유역 혹은 수문학적으로 유사한 유역의 B지점(연속계측이 이루어지는 지점)의 자료를 이용하여 보완하는 방식이다. 이를 위해 먼저 부분계측이 이루어진 날과 같은 날짜의 유량자료를 연속계측자료에서 추출한 다음 두 자료(A지점에서의 모든 유량과 B지점에서의 추출된 유량)의 상관성을 비교해 본다. 두 자료간에 상관도가 높다면 이를 잘 표현하는 방정식을 통해 A지점의 결측치를 내 외삽한다. 여기서 두 자료간 상관도를 잘 묘사할 수 있는 방법으로 본 연구에서는 최소제곱법(Least Square Estimator, LSE)과 분산확장법(Maintenance of Variance Extension, MOVE)을 비교,분석해 보았다. 한강수계 수질오염총량관리단위유역 중 동일지점에 8일 간격 부분계측 유량자료와 일 연속자료가 동시에 존재하는 곳이 6지점이 있었으며 이 자료들을 바탕으로 LSE와 MOVE의 정확도를 검증해 본 결과 MOVE가 일 연속유량 확장에 더 나은 결과를 보였다.

  • PDF

한국복지패널 자료를 이용한 아동기 공격성에 대한 경시적 자료 분석 (A longitudinal study for child aggression with Korea Welfare Panel Study data)

  • 최나연;허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1439-1447
    • /
    • 2014
  • 한국 학생들의 아동기 혹은 청소년기의 공격성에 대한 연구들은 대부분 횡단자료를 이용한 것들이다. 경시적 자료를 이용한 연구가 있지만, 반복측정된 자료들이 서로 독립이라는 가정 하에 연구되었다. 본 연구에서는 2006년부터 2012년까지 세 차례 반복측정에 의해 얻어진 한국복지패널 자료를 이용하여, 횡단자료 분석 연구의 결과인 아동 혹은 청소년의 공격성에 영향을 미치는 요인들로 알려진 학교 적응, 자아존중감, 우울 및 불안, 비행, 학교 폭력 피해 경험, 부모로부터 학대 경험과 인터넷 사용시간이 경시적 자료 분석에서도 공격성에 영향을 주는 지를 분석하고자 한다. 한국복지패널 자료의 결측치는 임의결측을 가정하고, 제한적 최우추정량을 이용한 선형혼합모형을 적합하고자 한다.

통행사슬 구조를 이용한 교통카드 이용자의 대중교통 통행종점 추정 (Inferring the Transit Trip Destination Zone of Smart Card User Using Trip Chain Structure)

  • 신강원
    • 대한교통학회지
    • /
    • 제34권5호
    • /
    • pp.437-448
    • /
    • 2016
  • 본 연구는 선행연구에서 제시하고 있는 통행기점 정보만을 제공하고 있는 불완전한 대중교통카드 자료로부터 대중교통 통행의 종점을 통행사슬 구조를 이용하여 추정할 수 있는 모형의 국내 자료 적용 가능성을 살펴보고 모형 적용 결과를 제시하였다. 이를 위해 본 연구는 부산에서 2014년 10월 주중에 수집된 선불 교통카드 승 하차 태그 원시자료 1,846,252건을 대상으로 하루 동안 한 대중교통 이용자가 발생시킨 일련의 통행들을 시 공간적으로 연계시켜 통행사슬을 형성하고, 대중교통 이용자의 결측 종점을 연속된 다음 통행의 승차지점 또는 최초 승차지점이 속한 교통존으로 추정하였다. 모형 검증을 위해 대중교통 통행종점이 관측된 자료에 모형을 적용한 결과 실제 통행종점과 추정 통행종점의 일치도는 82.4%로 나타났으며 이 때 통행종점으로 추정된 정류장과 실제 하차 정류장간 거리의 오차는 최소가 되는 것으로 나타나 제안모형의 유용성은 높은 것으로 분석되었다. 통행사슬 구조를 이용한 통행종점 추정 모형을 종점결측 통행에 적용했을 때 종점결측 통행의 비율은 적용 전 71.40%(718,915통행)에서 21.74%(218,907통행)로 감소하였으며 종점추정이 불가한 218,907통행의 대부분은 모형 적용이 불가한 일일 통행횟수 '1회'인 통행(169,359통행, 77.37%)인 것으로 나타났고, 일일 통행횟수가 '2회 이상'인 통행의 종점결측 비율은 69.56%에서 모형 적용 후 6.27%로 크게 감소하였다. 한편 통행종점 추정 모형 적용에 따른 존간 통행 및 존내 통행분포의 변화를 비교하기 위해 순위상관계수 및 카이제곱 적합도 검정을 수행하였으며, 분석 결과 통행종점 추정 모형 적용에 따라 각 중존별 통행량의 순위는 변화하지 않으나 통행량 분포는 유의한 변화를 보였다. 따라서 통행사슬 구조를 이용한 교통카드 이용자의 통행종점 추정 모형 적용은 통행종점이 결측된 불완전 대중교통카드 자료가 수집되고 있는 도시의 대중교통 통행패턴을 보다 현실적으로 반영할 수 있게 도움을 줄 것으로 판단된다.