KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.5
/
pp.2009-2019
/
2013
Traffic volumes are the important basic data which are directly used for transportation network planning, highway design, highway management and so forth. They are collected by two types of collection methods, one of which is the continuous traffic counts and the other is the short duration traffic counts. The continuous traffic counts are conducted for 365 days a year using the permanent traffic counter and the short duration traffic counts are conducted for specific day(s). In case of the continuous traffic counts the missing of data occurs due to breakdown or malfunction of the counter from time to time. Thus, the diverse imputation methods have been developed and applied so far. In this study the applied exponential smoothing method, in which the data from the days before and after the missing day are used, is proposed and compared with other imputation methods. The comparison shows that the applied exponential smoothing method enhances the accuracy of imputation when the coefficient of traffic volume variation is low. In addition, it is verified that the variation of traffic volume at the site is an important factor for the accuracy of imputation. Therefore, it is necessary to apply different imputation methods depending upon site and time to raise the reliability of imputation for missing traffic values.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.775-779
/
2006
강우자료의 구축은 수문해석에 있어 가장 기본적이며 중요한 단계라 할 수 있다. 하지만 수문 관측 자료의 경우 결측치가 존재하여 그에 대한 보정이 필요한 경우가 종종 발생하게 된다. 따라서 수문자료의 분석을 수행하기에 앞서 우선 자료에 대한 검정을 실시하고, 결측치가 존재할 경우는 이를 보정하여 분석을 수행하여야 한다. 본 연구에서는 다변량통계기법의 하나인 다중회귀분석을 이용하여 강우 결측치를 보정하였다. 본 연구에서는 다중공선성과 자기상관에 대하여 고려한 다중회귀모형을 구성하였다. 모형의 구성시 모든 결측지점에 적용이 가능하지 않아 일반성이 떨어짐을 확인 할 수 있었지만, 모형이 구성될 경우 통계적 적합도와 유의수준을 확인 할 수 있는 장점이 있었으며, 다중회귀모형이 구성되는 경우 좋은 보정 결과를 주는 것을 확인 할 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1196-1200
/
2010
본 논문에서는 지점 강우의 결측치를 추정하기 위해 전통적인 통계학적 내삽기법을 이용한 역거리가중치법(IDWM), 역지수가중치법(IEWM), 상관계수가중치법(CCWM)과 패턴 인식의 일종인 인공신경망(ANN)기법 그리고 시공간적 강우분포의 측정이 가능한 레이더 자료를 이용해 결측치를 추정하여 각각의 방법을 비교하였다. 임진강 유역의 15개 지상관측소를 대상으로 교차검정(Cross validation) 분석을 실시해 본 결과, CCWM 방법과 ANN기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 보정레이더를 이용하여 결측치를 추정한 경우RMSE가 0.05~2.26의 범위를 보여 기존의 전통적 결측치 추정방법보다 실측치에 가까운 결과를 보였다. 이는 레이더자료가 지점 강우자료와는 달리 강우의 시공간적 변동성을 고려한 공간분포의 정보를 지니고 있기 때문인 것으로 판단된다.
Kim, Jeong-Yeon;Lee, Yeong-In;Baek, Seung-Geol;Nam, Gung-Seong
Journal of Korean Society of Transportation
/
v.24
no.7
s.93
/
pp.27-40
/
2006
The traffic information is provided, which based on the volume of traffic, speed, occupancy collected through the currently operating Vehicle Detector System(VDS). In addition to the trend in utilization fold of traffic information is increasing gradually with the applied various fields and users. Missing data in Vehicle detector data means series of data transmitted to controller without specific property. The missing data does not have a data property, so excluded at the whole data Process Hence, increasing ratio of missing data in VDS data inflicts unreliable representation of actual traffic situation. This study presented the imputation process due out which applied the methodologies that utilized adjacent stations reference and historical data utilize about missing data. Applied imputation process methodologies to VDS data or SeoHaeAn/Kyongbu Expressway, currently operation VDS, after processes at missing data ratio of an option. Imputation process held presented to per lane-30seconds-period, and morning/afternoon/daily time scope ranges classified, and analyzed an error of imputed data preparing for actual data. The analysis results, an low error occurred relatively in the results of the imputation process way that utilized a historical data compare with adjacent stations reference methods.
We consider the missing covariates problem in generalized estimating equations(GEE) model. If the covariate is partially missing, GEE can not be calculated. In this paper, we study the performance of 7 imputation methods to handle missing covariates in GEE models, and the properties of GEE estimators are investigated after missing covariates are imputed for ordinal data of repeated measurements. The 7 imputation methods include i) Naive Deletion ii) Sample Average Imputation iii) Row Average Imputation iv) Cross-wave Regression Imputation v) Carry-over Imputation vi) Bayesian Bootstrap vii) Approximate Bayesian Bootstrap. A Monte-Carlo simulation is used to compare the performance of these methods. For the missing mechanism generating the missing data, we assume ignorable nonresponse. Furthermore, we generate missing covariates with or without considering wave nonresp onse patterns.
The amount and continuity of precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study a linear programming method treated as a data-driven approach for estimating the missing rainfall data is compared with seven other methods widely used and its superiority is certified. The data used in this research are annual precipitation ones during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station are estimated and the areal averages of annual precipitation data for 32 years at the Han River basin are calculated.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.264-264
/
2020
최근 기후변화로 우리나라는 과거에 비해 태풍이나 국지성 집중호우 및 가뭄 등 극심한 수문현상이 빈번하게 발생하고 그 피해가 더욱 커지고 있는 추세이다. 특히 우리나라의 경우 산지가 많으며 대부분의 하천이 유역면적이 작고 유로연장이 짧아 단시간에 유출이 발생하며 수문학적 특성이 연중 큰 편차를 보이고 있다. 이러한 이상기후에 따른 수문현상 파악 및 피해 경감을 위해 신뢰성 있는 수문자료는 매우 중요하다. 따라서 수문자료에 대한 품질관리는 필수적이지만 자료 결측 및 오측에 대한 신뢰성 높은 품질관리가 이뤄지지 못하고 있는 실정이다. 현재 수위자료의 결측이 발생한 경우 해당 관측소의 수위 자료를 사용해 선형보간 및 운형자법으로 수정하거나 상·하류 관측소의 관계를 이용하여 회귀분석을 통해 자료 결측의 수정 및 보완을 수행하는 등 담당자의 주관적 판단에 의존하고 있다. 본 논문에서는 신뢰성 높은 수문자료의 결측치 보완 및 예측을 위한 방안을 제시하고자 상류의 관측소의 수문자료를 이용한 하류의 단시간 수문 자료예측에 관한 연구를 수행하였다. 이를 위해 자료지향형 모델인 적응형 뉴로-퍼지 기법(Adaptive Network-based Fuzzy Inference System, ANFIS)을 이용한 모형을 적용하였다. 기존의 연구에서 가장 일반적으로 사용되는 물리적 모형은 수문자료를 활용하여 수위 및 유출을 산정함에 있어 매개변수의 결정이 어렵고 많은 오차들을 내포하고 있다. 본 연구에서 사용한 ANFIS는 입력자료와 출력자료만을 고려하여 구축할 수 있기 때문에 자료 수집단계에서 유역의 물리적 자료 및 지형 자료와 같은 방대한 양의 자료 수집이 필요가 없다. 이후 모형이 구축이 된다면 입·출력 자료만을 이용하여 신뢰성 높은 결과를 획득할 수 있지만 입력 자료의 품질에 따라 결과가 좌우되기 때문에 자료의 구성이 매우 중요하다. 본 연구에서는 ANFIS를 통해 무주남대천 유역의 무주군(여의교) 관측소의 수위자료를 입력자료를 사용하여 하류에 위치한 무주군(취수장) 관측소의 수문자료의 결측 보완 및 예측하는 모형을 구축하고 모형의 구조 변화를 통해 가장 정확도 높은 모형을 결정하였다.
Kim, Hwi-Rin;Cho, Hyo-Seob;Baek, Chang-Hyun;Jeong, Hyeon-Gyo
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1320-1323
/
2008
현재 건설교통부 한강홍수통제소에서는 96개의(2006 한국수문조사연보 기준) 수위관측소를 설치 운영하고 있으며 현장에서 수집되는 수위자료의 전송방법은 크게 두 가지로 중계소를 통해 실시간으로 전송되는 TM(TeleMetering) 방식과 기록지(Recording) 방식으로 구분된다. 고품질 수위자료의 생산 및 제공은 비단 수자원 관련 연구 분야에서 뿐만 아니라 하천의 효율적인 관리, 각종 국토개발계획 등에 다양하게 이용되고 있으며 특히 TM 자료의 경우는 실시간으로 현장에서 관측되는 수문자료를 수집하여 홍수예보시스템의 가장 중요한 입력자료로서 활용된다. 한강홍수통제소에서 구축 운영하고 있는 TM 수위자료와 일반 수위자료를 대상으로 현황을 검토한 결과 일반적으로 수위관측소의 자료 오류 유형을 관측기기부터 전송단계별로 분류하면 수위계 기기 고장(부자 걸림 등), 전송로 변경 및 통신 장비 고장 등으로 인한 오 결측으로 구분될 수 있다. 과거 오 결측된 자료를 보정하기 위한 방법으로는 2시간, 3시간 전(前)수위 자료를 이용해 이상치를 보정하는 것이 유일하게 활용되고 있었으나 작년에 한강수계를 대상으로 "국가수문자료 품질관리시스템구축(1차)" 연구 용역을 실시하여 시범 구축 결과를 금년부터 활용하고 있으며 본 시스템에 자료보정에 대한 다양한 방법이 탑재되어 있다. 이와 별도로 기왕자료의 보정방법으로 TM과 일반방식이 이중화 되어 있는 관측소의 경우에는 연속적인 자료를 나타내는 기록지 자료를 활용하는 것이 대안으로 제시되고 있다. 하지만, 기록지 자료를 통해 오 결측된 TM 자료를 보완하는 것에 대해서는 아직 연구된 바가 없으며 이와 관련된 다각적인 검토가 국내에서 부족한 실정이므로 본 연구에서는 실제 한강홍수통제소에서 관할하고 있는 이중화 기록방식의 관측소를 선정하여 TM과 기록지 수위관측자료의 비교 분석을 통해 오 결측된 TM 자료를 일반 기록지 자료로 보완에 하는 것에 대한 실효성을 심도 있게 검토하여 수위자료 품질향상의 기반을 마련코자 한다.
When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.19
no.1
/
pp.45-56
/
2007
Direct estimation of the pollutant load(PL) should be carried out by the data filling in the missing intervals using an appropriate method because it is impossible in which the flow discharge(water quantity) or water quality(WQ) time-series data set have the missing intervals. In this study, the several methods estimating the water quality in the missing periods are suggested and the WQ and pollutants load change patterns are compared and evaluated based on the reproducible degree of the available data change patterns. The most appropriate method is finally suggested and the contribution factor deciding the influence degree and the PL characteristics of the river estuary is also suggested. Based on the PL estimation results using the several methods, the interpolation method considering the fluctuation of the available WQ data is shown to be most efficient. The PL patterns of the Han river estuary is classified as the discharge-dominated type. The data filling process is inevitable and the WQ estimation using the efficient and effective method should be carried out in order to estimate reasonable PL.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.