• 제목/요약/키워드: 자력추진 물고기운동

검색결과 1건 처리시간 0.016초

가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석 (NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.