• 제목/요약/키워드: 자동 의미 태깅

검색결과 29건 처리시간 0.027초

의미그룹을 이용한 단어 중의성 해소 (Word Sense Disambiguation using Meaning Groups)

  • 김은진;이수원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.747-751
    • /
    • 2010
  • 본 연구에서는 기계 가독형 사전 정보를 이용하여 중의어 의미 태깅을 위한 학습에 사용될 양질의 의미부착 데이터를 자동 생성하여 중의어 태깅 정확도를 향상시키는 방법을 제안한다. 또한 중의어의 의미별로 특징있는 주변 단어를 원소로 갖는 의미그룹을 생성하고, 의미그룹내 중요 자질의 가중치 선정에 집중도 개념을 도입하여 태깅 정확도를 높인다. SENSEVAL-2 데이터를 사용하여 태깅 정확도를 평가한 결과 본 연구에서 제안한 방법이 기존의 방법보다 정확도를 향상시킨 것으로 나타났다.

사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구 (An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information)

  • 이용구;정영미
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.321-342
    • /
    • 2007
  • 이 연구에서는 수작업 태깅없이 기계가독형 사전을 이용하여 자동으로 의미를 태깅한 후 학습데이터로 구축한 분류기에 대해 의미를 분류하는 단어 중의성 해소 모형을 제시하였다. 자동 태깅을 위해 사전 추출 정보 기반방법과 연어 공기 기반 방법을 적용하였다. 실험 결과, 자동 태깅에서는 복수 자질 축소를 적용한 사전 추출 정보 기반 방법이 70.06%의 태깅 정확도를 보여 연어 공기 기반 방법의 56.33% 보다 24.37% 향상된 성능을 가져왔다. 사전 추출 정보 기반 방법을 이용한 분류기의 분류 정학도는 68.11%로서 연어 공기 기반 방법의 62.09% 보다 9.7% 향상된 성능을 보였다. 또한 두 자동 태깅 방법을 결합한 결과 태깅 정확도는 76.09%, 분류 정확도는 76.16%로 나타났다.

SVM 기계학습을 이용한 웹문서의 자동 의미 태깅 (Automatic semantic annotation of web documents by SVM machine learning)

  • 황운호;강신재
    • 한국산업정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.49-59
    • /
    • 2007
  • 본 논문은 시맨틱 웹의 실현을 위해서는 필수적인 작업인 웹문서의 의미를 자동으로 태깅할 수 있는 시스템에 관한 것이다. 웹상의 방대한 자원을 일일이 사람이 수작업으로 의미를 태깅한다는 것은 사실상 불가능하기 때문에 한국어 웹문서를 대상으로 대량의 학습 데이터를 수집하고 자연어처리 기법과 시소러스를 이용하여 특징을 추출한 후 SVM 기계학습을 통하여 개념분류기를 구축하였다. 한국어의 특징을 파악하여 의미 태깅에 필요한 특징 정보를 추출하기 위해서 형태소 분석과 구문 분석을 하였다. 추출된 특징정보는 가도카와 시소러스의 의미코드를 이용하여 학습벡터로 구성되는데, 이는 유사한 단어나 구를 하나의 개념코드로 매핑하여 시스템의 재현율을 높이는 역할을 하게 된다. 실험결과 자동 의미 태깅 분야에서 본 접근방법의 가능성을 확인할 수 있었다.

  • PDF

XML 편집도구를 이용한 향상된 RDFa 태깅 기법 (Enhanced RDFa Tagging Method using XML Editing Tool)

  • 최영호;차승준;이규철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.155-158
    • /
    • 2010
  • 시맨틱 웹 기술을 활용한 OpenAPI 의미 기반 검색 시스템에서 설명정보페이지에 의미정보를 가진 메타데이터를 첨가하기 위해 RDFa 기술을 이용한 태깅을 하였다. 하지만 태깅 시 사람이 수작업을 통해 입력하기 때문에 시간소모가 크고 오류 위험이 높다는 제약사항이 있다. 이러한 제약사항을 해결하기 위해 본 논문에서는 XML/XHTML 편집도구를 이용한 향상된 RDFa 태깅을 제안한다. 이는 속도향상과 오류 감소의 방법으로 XML/XHTML 편집도구에서 제공하는 자동완성 기능을 제안하고 있다. 그리고 자동완성 기능을 사용하기 위해 DTD를 수정하여 적용하였고 수정된 방법을 테스트한 결과 기존의 수동 태깅 기법보다 걸리는 시간이 단축됐고, 오류를 줄일 수 있음이 확인되었다. 결과를 얻을 수 있었다.

의미역 태깅의 제문제 (Consideration of Semantic Role Tagging)

  • 김윤정;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-80
    • /
    • 2015
  • 본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.

  • PDF

태깅 지원 시스템 : Hi-Tagger (A Tagging Support System : Hi-Tagger)

  • 이인근;정재은;황도삼;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.91-94
    • /
    • 2012
  • 컴퓨터가 인간의 자연언어를 처리하고 이해하도록 하기 위한 많은 연구가 진행되어 왔다. 그러나 컴퓨터에 의해 자동으로 구축한 정보의 신뢰성 문제로 인해 그 효용성이 낮다. 따라서 최근에는 웹 2.0 환경에서의 집단지성을 통한 오픈지식의 구축과 지식 간의 링크 정보의 활용이 주목을 받고 있다. 그러나 양질의 지식을 구축하기 위해서는 인간의 개입이 불가피하며 대부분의 오픈지식도 사용자들의 노력에 의존하여 구축되고 있다. 따라서 본 논문에서는 자연언어로 작성된 문장의 용어에 대한 태깅 작업을 지원하는 태깅지원 시스템을 개발한다. 개발한 시스템에서는 사용자가 문장을 작성하는 과정에서 자동으로 태깅 가능한 용어를 추천하고, 시스템이 추천한 용어에 대해 사용자는 태그셋(tagset) 에 등록된 태그 및 링크로 태깅을 수행한다. 이 시스템을 이용하여 경제, 과학, 문학, 철학의 4개 분야에 대해 5인의 실험자가 한글문서의 태깅 실험을 수행함으로써 개발한 시스템의 효용성을 확인한다.

  • PDF

태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법 (Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology)

  • 김재승;문현정;우용태
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.167-179
    • /
    • 2009
  • 본 논문에서는 태그 온톨로지를 이용하여 표준화된 태그를 추천할 수 있는 기법을 제안하였다. 태그 추천 기법은 기존에 생성된 대량의 문서 집합을 대상으로 자동 태깅하기 위한 기법(TWCIDF)과 신규 문서를 대상으로 태그를 추천하기 위한 기법(TWCITC)으로 구성된다. 태그집합은 전처리 과정, 태그 온톨로지를 이용한 표준화 작업, 자동 태깅 및 추천을 위한 랭킹 부여과정을 거쳐 구성된다. 전처리 과정에서는 의미있는 복합명사를 찾기 위한 용어결합과정을 사용하였고, 표준화 작업 과정에서는 용어의 오탈자 및 유사용어를 처리하였다. 본 논문에서 제안한 기법의 실험 결과, 추천 태그의 정확성을 유지하면서도 실시간으로 자동태깅 및 태그 추천이 가능함을 보여주었다.

  • PDF

ExoBrain을 위한 한국어 의미역 가이드라인 및 말뭉치 구축 (Korean Proposition Bank Guidelines for ExoBrain)

  • 임수종;권민정;김준수;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.250-254
    • /
    • 2015
  • 본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.

  • PDF

개체명 사전 기반의 반자동 말뭉치 구축 도구 (A Semi-automatic Annotation Tool based on Named Entity Dictionary)

  • 노경목;김창현;천민아;박호민;윤호;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

개체명 사전 기반의 반자동 말뭉치 구축 도구 (A Semi-automatic Annotation Tool based on Named Entity Dictionary)

  • 노경목;김창현;천민아;박호민;윤호;김재균;김재훈
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF