• Title/Summary/Keyword: 자동 의미 태깅

Search Result 29, Processing Time 0.024 seconds

Word Sense Disambiguation using Meaning Groups (의미그룹을 이용한 단어 중의성 해소)

  • Kim, Eun-Jin;Lee, Soo-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.747-751
    • /
    • 2010
  • This paper proposes the method that increases the accuracy for tagging word meaning by creating sense tagged data automatically using machine readable dictionaries. The concept of meaning group is applied here, where the meaning group for each meaning of a target word consists of neighbor words of the target word. To enhance the tagging accuracy, the notion of concentration is used for the weight of each word in a meaning group. The tagging result in SENSEVAL-2 data shows that accuracy of the proposed method is better than that of existing ones.

An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information (사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구)

  • Lee, Yong-Gu;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1 s.63
    • /
    • pp.321-342
    • /
    • 2007
  • This study presents an effective word sense disambiguation model that does not require manual sense tagging Process by automatically tagging the right sense using a machine-readable and the collocation co-occurrence-based methods. The dictionary information-based method that applied multiple feature selection showed the tagging accuracy of 70.06%, and the collocation co-occurrence-based method 56.33%. The sense classifier using the dictionary information-based tagging method showed the classification accuracy of 68.11%, and that using the collocation co-occurrence-based tagging method 62.09% The combined 1a99ing method applying data fusion technique achieved a greater performance of 76.09% resulting in the classification accuracy of 76.16%.

Automatic semantic annotation of web documents by SVM machine learning (SVM 기계학습을 이용한 웹문서의 자동 의미 태깅)

  • Hwang, Woon-Ho;Kang, Sin-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.2
    • /
    • pp.49-59
    • /
    • 2007
  • This paper is about an system which can perform automatic semantic annotation to actualize "Semantic Web." Since it is impossible to tag numerous documents manually in the web, it is necessary to gather large Korean web documents as training data, and extract features by using natural language techniques and a thesaurus. After doing these, we constructed concept classifiers through the SVM (support vector machine) teaming algorithm. According to the characteristics of Korean language, morphological analysis and syntax analysis were used in this system to extract feature information. Based on these analyses, the concept code is mapped with Kadokawa thesaurus, which made it possible to map similar words and phrase to one concept code, to make training vectors. This contributed to rise the recall of our system. Results of the experiment show the system has a some possibility of semantic annotation.

  • PDF

Enhanced RDFa Tagging Method using XML Editing Tool (XML 편집도구를 이용한 향상된 RDFa 태깅 기법)

  • Choi, Young-Ho;Cha, Seung-Jun;Lee, Kyu-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.155-158
    • /
    • 2010
  • 시맨틱 웹 기술을 활용한 OpenAPI 의미 기반 검색 시스템에서 설명정보페이지에 의미정보를 가진 메타데이터를 첨가하기 위해 RDFa 기술을 이용한 태깅을 하였다. 하지만 태깅 시 사람이 수작업을 통해 입력하기 때문에 시간소모가 크고 오류 위험이 높다는 제약사항이 있다. 이러한 제약사항을 해결하기 위해 본 논문에서는 XML/XHTML 편집도구를 이용한 향상된 RDFa 태깅을 제안한다. 이는 속도향상과 오류 감소의 방법으로 XML/XHTML 편집도구에서 제공하는 자동완성 기능을 제안하고 있다. 그리고 자동완성 기능을 사용하기 위해 DTD를 수정하여 적용하였고 수정된 방법을 테스트한 결과 기존의 수동 태깅 기법보다 걸리는 시간이 단축됐고, 오류를 줄일 수 있음이 확인되었다. 결과를 얻을 수 있었다.

Consideration of Semantic Role Tagging (의미역 태깅의 제문제)

  • Kim, Yun-Jeong;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.75-80
    • /
    • 2015
  • 본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.

  • PDF

A Tagging Support System : Hi-Tagger (태깅 지원 시스템 : Hi-Tagger)

  • Lee, In Keun;Jung, Jason J.;Hwang, Dosam;Kim, Young Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.91-94
    • /
    • 2012
  • 컴퓨터가 인간의 자연언어를 처리하고 이해하도록 하기 위한 많은 연구가 진행되어 왔다. 그러나 컴퓨터에 의해 자동으로 구축한 정보의 신뢰성 문제로 인해 그 효용성이 낮다. 따라서 최근에는 웹 2.0 환경에서의 집단지성을 통한 오픈지식의 구축과 지식 간의 링크 정보의 활용이 주목을 받고 있다. 그러나 양질의 지식을 구축하기 위해서는 인간의 개입이 불가피하며 대부분의 오픈지식도 사용자들의 노력에 의존하여 구축되고 있다. 따라서 본 논문에서는 자연언어로 작성된 문장의 용어에 대한 태깅 작업을 지원하는 태깅지원 시스템을 개발한다. 개발한 시스템에서는 사용자가 문장을 작성하는 과정에서 자동으로 태깅 가능한 용어를 추천하고, 시스템이 추천한 용어에 대해 사용자는 태그셋(tagset) 에 등록된 태그 및 링크로 태깅을 수행한다. 이 시스템을 이용하여 경제, 과학, 문학, 철학의 4개 분야에 대해 5인의 실험자가 한글문서의 태깅 실험을 수행함으로써 개발한 시스템의 효용성을 확인한다.

  • PDF

Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology (태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법)

  • Kim, Jae-Seung;Mun, Hyeon-Jeong;Woo, Tae-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.167-179
    • /
    • 2009
  • This paper introduces techniques to recommend standardized tags using tag ontology. Tag recommendation consists of TWCIDF and TWCITC; the former technique automatically tags a large quantity of already existing document groups, and the latter recommends tagging for new documents. Tag groups are created through several processes, including preprocessing, standardization using tag ontology, automatic tagging and defining ranks for recommendation. In the preprocessing process, in order to search semantic compound nouns, words are combined to establish basic word groups. In the standardization process, typographical errors and similar words are processed. As a result of experiments conducted on the basis of techniques presented in this paper, it is proved that real-time automatic tagging and tag recommendation is possible while guaranteeing the accuracy of tag recommendation.

  • PDF

Korean Proposition Bank Guidelines for ExoBrain (ExoBrain을 위한 한국어 의미역 가이드라인 및 말뭉치 구축)

  • Lim, Soojong;Kwon, Minjung;Kim, Junsu;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.250-254
    • /
    • 2015
  • 본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF