정보통신 기기들의 가격하락과 인터넷의 발전은 사물인터넷이라는 새로운 분야를 탄생시켰다. 일상에 접하는 모든 사물들이 인터넷으로 연결되어 새로운 서비스를 창출하는 사물인터넷은 빅데이터와 결합되어 기존에 볼 수 없었던 새로운 형태의 비즈니스 영역을 개척해 나가고 있다. 이에 사물인터넷의 전망은 그 활용도에 있어서 무궁무진 하다고 말할 수 있다. 또한 이러한 사물인터넷 장비들의 원활한 연결을 위한 표준화 기관들의 연구도 활발한 편이다. 그러나 이러한 연구 중에 우리가 간과하는 부분이 있다. 사물인터넷 장비를 제어하거나 정보를 획득하기 위해서 장비와의 연동문제(IP주소, Wi-Fi, Bluetooth, NFC 등) 및 관련 애플리케이션 소프트웨어 또는 앱을 별도로 개발을 해야 한다. 이러한 문제를 해결하기 위해 기존의 연구방식들은 GPS 또는 마커를 이용한 증강현실 연구가 이루어져 왔다. 하지만 별도의 마커가 필요하고 마커의 경우 가까운 곳만 인식하는 단점을 갖는다. 또한 2D 기반의 카메라의 활용한 GPS 주소 활용한 연구의 경우 대상 장비와의 거리 인식을 할 수 없어 능동적인 인터페이스 구현의 어려움이 있었다. 이러한 문제를 해결하기 위해서는 기존의 복잡한 방법이 아니라 사용자가 눈으로 확인하고 간단한 조작만으로 장비와의 연동이 가능한 직관적인 방법이 반드시 필요하다. 본 연구는 향후 스마트폰에 탑재될 3D 깊이 인식카메라를 활용해서 별도의 마커 없이 거리측정 및 핸드폰의 센서정보를 연동해서 자동으로 공간 좌표를 계산하여 사물인터넷의 장비를 발견하고 해당 사물인터넷 장비의 정보 획득 및 제어가 가능한 방법론을 제안한다. 결과로 사용자 관점에서 별도의 사물인터넷 장비 연동문제 및 앱 설치에 대한 부담을 줄일 수 있다. 나아가 이 기술이 공공서비스와 스마트 안경분야에 활용된다면 공공 서비스 증대 및 많은 소프트웨어 개발의 중복 투자를 줄이게 될 것이다.
WiFi 신호지도법은 실내 환경을 위한 효과적인 위치 추적 기술로 잘 알려져 있다. 하지만 이 기술은 주어진 공간 전역에 걸쳐 미리 구축된 대용량의 신호지도가 있어야 적용할 수 있다. 또한 이 기술을 적용하기 위해서는 환경이 변함에 따라 전문가에 의해 주기적으로 새로운 신호지도를 구축하거나 변경하는 작업이 필요하다. 최근 들어 이러한 문제점을 극복하기 위한 한 가지 방법으로서, 군중-제공 신호지도 작성 방식이 많은 연구자들의 관심을 모으고 있다. 이 방식은 다수의 자발적인 사용자들로 하여금 특정 공간에서 수집한 자신들의 신호지도를 다른 사람들과 함께 서로 공유할 수 있도록 해준다. 따라서 군중-제공 신호지도 방식을 이용하면 신호지도를 자동으로 최신의 상태로 변경할 수 있다. 하지만, 대부분의 군중-제공 신호지도 작성 시스템들에서는 사용자들이 자신의 위치를 스스로 판단하여 수작업으로 직접 입력하도록 요구하고 있다. 그 뿐만 아니라, 이들 시스템에서는 다수의 사용자들로부터 수집되는 신호지도들 중에서 오류가 있는 것들을 찾아내고 이들을 여과해주는 체계적인 메커니즘을 가지고 있지 않다. 본 논문에서는 군중-제공 신호지도 작성 및 위치 추적(CMAL) 시스템의 설계에 대해 소개한다. 본 논문에서 제안하는 시스템은 다수의 스마트폰 사용자들로부터 수집된 지역 신호지도들을 이용하여 자동으로 공유 신호지도를 구축/갱신할 수 있을 뿐만 아니라, 동시에 새로운 신호지도를 이용하여 각 스마트폰 사용자의 위치를 추적할 수 있는 기능을 제공한다. 본 시스템은 각 스마트폰에서 신호지도를 수집하는 다수의 클라이언트들과, 공유 신호지도 데이터베이스를 관리하는 중앙의 서버로 구성된다. 각 클라이언트에는 스마트폰 사용자의 실시간 위치를 추적하면서 동시에 지역 신호지도를 생성하는 파티클 필터-기반의 WiFi SLAM 엔진을 내장하고 있으며, 서버에는 공유 신호지도의 무결성 유지를 위한 가우시안 보간법 기반의 오류 여과 알고리즘을 채택하고 있다. 다양한 실험들을 수행한 결과를 통해, 본 논문에서 제안한 시스템의 높은 성능을 확인할 수 있었다.
목적: 심근관류 SPECT에서 자동정량화 소프트웨어를 이용해 관류 및 기능에 대한 객관적이고 재현성 높은 정량 값을 얻을 수 있지만, 이러한 정량값들을 이용할 때는 분절별로 적지 않은 정상변이가 있음을 고려해야 한다. 이 연구에서는 관류에 대한 정량값에서 정상변이를 고려한 새로운 지표들을 유도하고, 이러한 지표들이 임상적 유용성을 가지는지 생존심근 평가를 통해 알아보았다. 대상 및 방법: 심근관류 SPECT에서 관류의 정상변이를 구하기 위해 55명(남:여=28:27)의 관상동맥질환 저확률군을 선정하였다. 이들에게서 $^{201}Tl$ 휴식기/$^{99m}Tc-MIBI$ 부하기 심근관류 SPECT를 실시하고, 20분절 모델을 이용하여 $^{201}Tl$ 휴식기 관류정량값에 대한 각 분절의 평균(m)과 표준편차(SD)를 구하였다. 생존심근 평가를 위해서는 관상 동맥질환을 진단 받고 관상동맥우회로이식술(CABG)을 시행한 환자 48명을 연구대상에 포함하였다. 이들은 수술전 $^{201}Tl$ 휴식기/$^{99m}Tc$-MIBI 부하기 게이트/$^{201}Tl$ 24시간 지연 SPECT을 실시하였고, 수술 3개월 후 추적 게이트 SPECT를 실시하여 생존심근을 판정하였다. 수술 전 $^{201}Tl$ 24시간 지연 SPECT에서 분절별 $Q_{delay}$ (관류정량값), ${\Delta}_{delay}$ ($Q_{delay}$ - m), $Z_{delay}$ (($Q_{delay}$ - m)/SD)가 정의되었고 이들의 생존심근에 대한 진단성적은 수신자특성곡선 상의 곡선하면적(AUC)을 통해 평가하였다. 결과: 관류정량값은 분절 사이에 상당한 변이를 보여, 남자의 경우 최저치 분절에서 $51.8{\pm}6.5$, 최고치 분절에서 $87.0{\pm}5.9$였고, 여성의 경우 최저치 분절 $58.7{\pm}8.1$, 최고치 분절 $87.3{\pm}6.0$으로 나타났다. 생존심근에 대한 진단성능 평가에서 $Q_{delay}$의 AUC는 0.633인데 반해 ${\Delta}_{delay}$와 $Z_{delay}$의 AUC는 각각 0.735와 0.716으로 나타나 $Q_{delay}$에 비해 유의하게 높은 값을 보였다(각각 p=0.001, 0.018). 가장 높은 AUC를 보인 ${\Delta}_{delay}$는, 최적분리점 -24.7에서 85%의 예민도와 53%의 특이도를 가지는 것으로 나타났다. 결론: 심근관류 SPECT의 자동 정량화 분석에서 관류정량값의 정상변이는 분절에 따라 상당한 것으로 나타났다. 이들을 고려하여 유도된 정량적 지표들은 직접적인 관류정량값에 비해 생존심근 진단에서 더 나은 진단성적을 보였다. 이 연구는 심근관류 SPECT의 정량적 분석에서 정상변이의 고려가 중요함을 시사한다.
벼논에서 배출되는 메탄은 주로 폐쇄형 챔버법 또는 에디 공분산법을 이용하여 관측이 이루어진다. 본 연구에서는 기존 측정법들이 갖고 있는 장점은 활용하고 단점은 보완할 수 있는 레이저 기반의 휴대용 기체 분석기(LI-7810)와 자동 개폐식 챔버(Smart Chamber) 를 결합한 새로운 관측 기술을 소개하였다. 벼의 최대 생장 높이에 맞춰 원통 형태의 칼라를 제작하여 측정 보조 도구로 활용하였다. 시범 관측은 경기도 파주시 적성면 객현리 일대의 영농형 태양광 설비가 갖춰진 논에서 2021년 8월부터 2022년 10월까지 이루어졌다. 벼논에서의 메탄 관측을 통해 얻게 되는 가장 일반적인 그래프는 벼의 통기조직을 통한 배출로 인해 메탄의 혼합비가 일정한 기울기로 꾸준히 증가하는 특징이 나타난다. 측정되는 모든 종류의 데이터뿐만 아니라 측정과 동시에 계산되는 메탄 플럭스 값도 실시간 모니터링이 가능하며, 측정이 끝난 후에는 'SoilFluxPro' 라는 소프트웨어를 통해 관련 데이터를 확인할 수 있다. 기존의 챔버법에서는 불가능했던 포집된 온실가스 농도의 연속적인 시계열 변화를 현장에서 바로 확인할 수 있다는 점은 새 관측 기술의 가장 큰 장점이다. 동시에 좁은 지역에 다양한 처리 조건을 가지는 경우에도 적용할 수 있으며, 에디 공분산법보다 사용법이 더 간단하고 설치 및 유지보수에 들어가는 노력이 덜하다는 점에서 매력이 있다. 하지만 관측시스템이 여전히 고가이고 그 운용에 전문적인 지식이 필요하며, 다양 한 관측 구역에 여러 개의 칼라를 설치하고 이동하며 측정하는데 인력이 많이 들어간다는 단점도 존재한다. 새로운 관측 방식이 벼논에서의 메탄 배출 경로를 확인하고 그에 따른 배출량을 정량화하는데 많은 기여를 할 수 있을 것으로 기대된다.
전통적으로 심근 생존능을 식별하고 심근 관류를 정확히 평가하기 위한 도구로 핵의학영상이 이용되고 있으나 경색영역을 정의하기에는 어려움이 있다. 이에 본 연구에서는 극성지도의 분포를 분석하여 특성에 맞는 적응적 임계값을 이용하여 심근경색 모델을 정량적으로 평가하고자 하였다. 쥐 심근경색 모델은 왼쪽 관상동맥을 결찰시켜 제작하였다. 소동물PET 영상은 37 MBq $^{18}F$-FDG를 쥐의 꼬리정맥에 주사한 후 60분 섭취 후 Siemens Inveon SPECT/PET 스캐너를 이용하여 20분 동안 ECG 신호와 함께 획득하였고, OSEM 2D 알고리즘을 이용하여 재구성하였다. PET 영상의 심근 극성지도는 Siemens QGS 소프트웨어에 적합한 형식으로 변환 후 자동으로 심근 벽을 설정하여 작성하였다. 심근경색영역의 기준데이터는 TTC 염색으로 설정하였으며 전체 좌심실대비 염색된 영역의 백분율로 획득하였다. 최적의 임계값 설정을 위해 절대치 설정 방법, Otsu 알고리즘, 다중가우시안혼합모델(Multi Gaussian mixture model, MGMM)을 이용하여 평가하였다. 절대치 설정 방법은 10~90%까지 10%단위로 미리 정의 된 임계값을 이용하였고, Otsu 알고리즘은 영상 내에서 두 군집의 분산을 최대로 하는 임계값으로 설정하였다. MGMM 방법은 영상의 화소 강도를 분석하여 여러 개의 가우시안 분포함수(MGMM2, $\cdots$ MGMM4)로 반복 수행하여 최적의 가우시안 분포를 구하여 적응적 임계값을 설정하였다. 극성지도 평가지표는 각각의 알고리즘에서 측정된 임계값을 이용하여 이진화하고 전체 극성지도와 경색영역의 백분율로 획득한 후, TTC 염색으로 획득된 기준데이터와의 차이를 비교하였다. 그 차이는 절대치 방법의 20%에서 $7.04{\pm}3.44%$, 30%에서 $3.87{\pm}2.09%$, 40%에서 $2.15{\pm}2.07%$이었다. Otsu 방법은 $3.56{\pm}4.16%$이었으며 MGMM 방법은 $2.29{\pm}1.94%$이었다. 소동물 PET 극성지도에서는 30% 임계값이 조직학적 데이터와 비교하여 가장 작은 차이를 보였다. 그러나 TTC 염색으로 측정한 크기가 10% 이하에서는 MGMM 방법이 절대치 방법보다 작은 차이를 보였다(MGMM: 0.006%, 절대치방법: 0.59%). 이 연구에서는 심근경색 모델 평가를 위하여 생체영상 극성지도에서 다중가우시안혼합모델을 이용하여 평가하고자 하였다. MGMM은 사용자의 선택 없이도 자동적으로 영상 특성을 고려하여 적응적 임계값을 찾아주는 방법으로 극성지도에서 심근경색을 평가하는데 도움이 될 것으로 기대된다.
닭의 대사 생리에 대한 연구는 산업적 가치 및 생물학, 의학적으로도 매우 중요하다. 닭의 유전체 염기서열 분석 결과는 2004년에 처음 발표되었고, 이러한 유전체 정보를 바탕으로 유전형과 표현형의 상관관계를 분석하는 연구가 필요하다. 따라서 본 연구는 닭 유전체 정보를 바탕으로 대사 경로를 재확립하고, 닭 특이 대사 경로 유전체 데이터베이스를 구축하였다. 이를 위해 Perl 언어를 기반으로 개발된 자동 파이프라인(pipeline)을 이용하여 여러 생물정보 데이터베이스에 산재해 있는 닭 유전체에 관한 정보를 통합한 닭 특이 통합 데이터베이스를 구축하였다. 또한, 구축된 닭 특이 통합 데이터베이스를기반으로PathoLogic 알고리즘을구현한Pathway Tools 소프트웨어를 이용하여 닭 특이 대사 경로를 재확립하였다. 결과적으로, 닭 유전체 Gallus_gallus-2.1에서 2,709개의 효소, 71개의 운반체(transporter)와 1,698개의 효소 반응, 8개의 운반 반응(transport reaction)이 도출되었다. 이를 통해 총 212개의 대사 경로가 재확립되었고, 1,360개의 화합물(compound)이 닭 특이 대사 데이터베이스에 포함되었다. 다른 종(사람, 생쥐, 소)과의 비교 분석을 통해 중요한 대사 경로가 닭 유전체에 보존되어 있음을 보였다. 또한, 닭 유전체의 assembly와 annotation의 질을 높이는 노력과 닭 및 조류에서 유전자 기능 및 대사 경로에 대한 연구가 필요한 것으로 나타났다. 결론적으로, 본 연구에서 재확립된 닭의 대사 경로 및 데이터베이스는 닭 및 조류의 대사 연구뿐만 아니라 포유동물 및 미생물과의 비교 생물학적 접근을 통한 의학 및 생물학적 연구에 활용될 것으로 기대된다.
이중에너지 방사선 흡수계측법(Dual-energy X-ray Apsorptiometry, DXA)은 일반적으로 골밀도를 통한 골다공증 평가 및 치료목적으로 이용되어 왔으며 최근 비만에 대한 관심이 높아지면서 체지방검사 처방이 증가하고 있는 추세이다. 기존의 체지방 측정은 전신을 검사해야만 평가가 가능했지만 근래 DXA장비의 소프트웨어가 향상 되면서 요추와 대퇴부의 측정만으로도 전신체지방률을 추측 할 수 있게 되었다. 전신측정이 아닌 부분측정 값이 다른 검사방법으로 산출된 값과 비교하여 타당성을 갖는지 생체전기저항측정법(Bioelectrical Impedence Analysis, BIA)과 체질량 지수(Body Mass Index, BMI)와의 상관도 분석을 통해 알아보고자 한다. 2010년 3월부터 8월까지 본원 건강검진센터에 내원한 수검자 중 40세 이상의 여성 90명을 대상으로 DXA와 BIA를 통해 체지방률을 측정하였다. BMI는 신체 계측기를 통해 측정된 신장과 체중을 수검자 정보에 기입하여 자동으로 산출되는 값을 활용하였다. 또한 체중에 따른 차이가 있는지 알아보기 위해 BMI를 기준으로 저체중, 정상, 비만의 세 그룹으로 분류하여 각 그룹에서 BMI와 BIA, DXA 간의 상관도를 분석하였다. 저체중과 정상, 비만으로 나눈 세 그룹에서의 DXA와 BIA의 비교는 모든 그룹에서 통계적으로 유의한 차이를 보이지 않았다. 그룹으로 나누지 않은 상태에서의 상관분석결과 DXA로 측정된 체지방률은 BMI와 비교해 통계적으로 유의한 높은 상관관계를 나타냈으며(r=0.908, p<0.01) BIA와의 비교에서도 통계적으로 유의한 높은 상관관계를 보였다(r=0.927, p<0.01). 부분 골밀도 측정으로부터 추정된 전신체지방률이 BIA 그리고 BMI와 비교해 뛰어난 상관관계를 보여 정보의 신뢰도가 높다는 것을 확인하였다. 아직 추정된 전신체지방률에 관한 명확한 기준이 없어 골밀도측정만으로 체지방평가를 하기는 어렵다. 그러나 골밀도검사를 통해 골다공증의 진단은 물론 체지방에 관한 정보까지 얻을 수 있다는 점에서 매우 효율적이며 추후 전신골밀도검사로 측정된 체지방률과의 비교연구를 통해 더 객관적이고 임상적으로 유용한 정보 제공이 가능할 것으로 판단된다.
목적: 허혈성 심질환에서 재관류 이후 기절심근이 동면심근보다 빠른 기능회복을 보임과, 심근 SPECT 상의 관류결손 가역성에 따라 기절심근과 동면심근이 구별 가능함을 시사하는 최근의 보고들을 바탕으로, 수술 전 관류결손 가역성에 따라 CABG 이후 심근 기능회복의 시간경과에 차이가 있는지 알아보고자 하였다. 대상 및 방법: 92명의 허혈성 심질환 환자에서 CABG 이전, 3개월 후, 17개월 후에 Tl-201 휴식기/디피리다몰 부하 Tc-99m-MIBI 게이트 SPECT를 실시하고, 각 영상에서 심근을 20분절로 나누어 각 분절의 관류와 수축기 두꺼워짐을 자동정량 소프트웨어를 이용하여 정량하였다. 관류결손과 두꺼워짐 이상을 보인 심근을 관류결손 가역성 있음(REV)과 없음(IRREV)의 두 군으로 나누고, 각각의 군에서 CABG 후 10% 이상의 두꺼워짐 호전을 기능회복으로 정의하여 3개월과 17개월째 심근의 기능회복 양상을 비교해 보았다. 결과: 129분절이 분석대상에 포함되어 76분절이 REV, 53분절이 IRREV 군으로 분류되었다. 이중 3개월째 기능회복심근은 REV군이 61개(80%), IRREV 군은 28개 (53%)로 유의한 차이를 보였다(p<0.001). 그러나 17개월째에는 REV 군이 60개 (79%), IRREV의 군이 37개 (70%)로 두 군간 차이가 없었다(p=n.s.). 한편 각 군 내에서 3개월과 17개월의 기능회복 분절을 비교하였을 때, REV 군은 차이가 없었으나(p=n.s.) IRREV 군은 17개월째 기능회복 심근이 3개월보다 유의하게 많았다(p<0.05). 결론: 생존능이 있는 허혈성 기능장애 심근에서, 관류결손의 가역성이 없는 심근은 가역성이 있는 심근보다 재관류 이후 기능회복이 지연되어 있다.
시뮬레이션 기법을 이용한 시스템의 분석에 있어서 실험의 자동화는 현재 많은 연구와 개발이 진행 중인 분야이다. 컴퓨터와 정보통신 시스템에 대한 시뮬레이션의 예를 들어 보면, 수많은 모델을 대한 시뮬레이션을 수행할 경우 자동화된 실험의 제어가 요구되고 있다. 시뮬레이션 수행회수, 수행길이, 데이터 수집방법 등과 관련하여 시뮬레이션 실험방법이 자동화가 되지 않으면, 시뮬레이션 실험에 필요한 시간과 인적 자원이 상당히 커지게 되며 출력데이터에 대한 분석에 있어서도 어려움이 따르게 된다. 시뮬레이션 실험방법을 자동화하면서 효율적인 시뮬레이션 출력분석을 위해서는 시뮬레이션을 수행하는 경우에 항상 발생하는 초기편의 (initial bias)를 제거하는 문제가 선결되어야 한다. 시뮬레이션 출력분석에 사용되는 데이터들이 초기편의를 반영하지 않는 안정상태에서 수집된 것이어야만 실제 시스템에 대한 올바른 해석이 가능하다. 실제로 시뮬레이션 출력분석과 관련하여 가장 중요하면서도 어려운 문제는 시뮬레이션의 출력데이터가 이루는 추계적 과정 (stochastic process)의 안정상태 평균과 이 평균에 대한 신뢰구간(confidence interval: c. i.)을 구하는 것이다. 한 신뢰구간에 포함되어 있는 정보는 의사결정자에게 얼마나 정확하게 평균을 추정할 구 있는지 알려 준다. 그러나, 신뢰구간을 구성하는 일은 하나의 시뮬레이션으로부터 얻어진 출력데이터가 일반적으로 비정체상태(nonstationary)이고 자동상관(autocorrelated)되어 있기 때문에, 전통적인 통계적인 기법을 직접적으로 이용할 수 없다. 이러한 문제를 해결하기 위해 시뮬레이션 출력데이터 분석기법이 사용된다.본 논문에서는 초기편의를 제거하기 위해서 필요한 출력데이터의 제거시점을 찾는 새로운 기법으로, 유클리드 거리(Euclidean distance: ED)를 이용한 방법과 현재 패턴 분류(pattern classification) 문제에 널리 사용 중인 역전파 신경망(backpropagation neural networks: BNN) 알고리듬을 이용하는 방법을 제시한다. 이 기법들은 대다수의 기존의 기법과는 달리 시험수행(pilot run)이 필요 없으며, 시뮬레이션의 단일수행(single run) 중에 제거시점을 결정할 수 있다. 제거시점과 관련된 기존 연구는 다음과 같다. 콘웨이방법은 현재의 데이터가 이후 데이터의 최대값이나 최소값이 아니면 이 데이터를 제거시점으로 결정하는데, 알고기듬 구조상 온라인으로 제거시점 결정이 불가능하다. 콘웨이방법이 알고리듬의 성격상 온라인이 불가능한 반면, 수정콘웨이방법 (Modified Conway Rule: MCR)은 현재의 데이터가 이전 데이터와 비교했을 때 최대값이나 최소값이 아닌 경우 현재의 데이터를 제거시점으로 결정하기 때문에 온라인이 가능하다. 평균교차방법(Crossings-of-the-Mean Rule: CMR)은 누적평균을 이용하면서 이 평균을 중심으로 관측치가 위에서 아래로, 또는 아래서 위로 교차하는 회수로 결정한다. 이 기법을 사용하려면 교차회수를 결정해야 하는데, 일반적으로 결정된 교차회수가 시스템에 상관없이 일반적으로 적용가능하지 않다는 문제점이 있다. 누적평균방법(Cumulative-Mean Rule: CMR2)은 여러 번의 시험수행을 통해서 얻어진 출력데이터에 대한 총누적평균(grand cumulative mean)을 그래프로 그린 다음, 안정상태인 점을 육안으로 결정한다. 이 방법은 여러 번의 시뮬레이션을 수행에서 얻어진 데이터들의 평균들에 대한 누적평균을 사용하기 매문에 온라인 제거시점 결정이 불가능하며, 작업자가 그래프를 보고 임의로 결정해야 하는 단점이 있다. Welch방법(Welch's Method: WM)은 브라운 브리지(Brownian bridge) 통계량()을 사용하는데, n이 무한에 가까워질 때, 이 브라운 브리지 분포(Brownian bridge distribution)에 수렴하는 성질을 이용한다. 시뮬레이션 출력데이터를 가지고 배치를 구성한 후 하나의 배치를 표본으로 사용한다. 이 기법은 알고리듬이 복잡하고, 값을 추정해야 하는 단점이 있다. Law-Kelton방법(Law-Kelton's Method: LKM)은 회귀 (regression)이론에 기초하는데, 시뮬레이션이 종료된 후 누적평균데이터에 대해서 회귀직선을 적합(fitting)시킨다. 회귀직선의 기울기가 0이라는 귀무가설이 채택되면 그 시점을 제거시점으로 결정한다. 일단 시뮬레이션이 종료된 다음, 데이터가 모아진 순서의 반대 순서로 데이터를 이용하기 때문에 온라인이 불가능하다. Welch절차(Welch's Procedure: WP)는 5회이상의 시뮬레이션수행을 통해 수집한 데이터의 이동평균을 이용해서 시각적으로 제거시점을 결정해야 하며, 반복제거방법을 사용해야 하기 때문에 온라인 제거시점의 결정이 불가능하다. 또한, 한번에 이동할 데이터의 크기(window size)를 결정해야 한다. 지금까지 알아 본 것처럼, 기존의 방법들은 시뮬레이션의 단일 수행 중의 온라인 제거시점 결정의 관점에서는 미약한 면이 있다. 또한, 현재의 시뮬레이션 상용소프트웨어는 작업자로 하여금 제거시점을 임의로 결정하도록 하기 때문에, 실험중인 시스템에 대해서 정확하고도 정량적으로 제거시점을 결정할 수 없게 되어 있다. 사용자가 임의로 제거시점을 결정하게 되면, 초기편의 문제를 효과적으로 해결하기 어려울 뿐만 아니라, 필요 이상으로 너무 많은 양을 제거하거나 초기편의를 해결하지 못할 만큼 너무 적은 양을 제거할 가능성이 커지게 된다. 또한, 기존의 방법들의 대부분은 제거시점을 찾기 위해서 시험수행이 필요하다. 즉, 안정상태 시점만을 찾기 위한 시뮬레이션 수행이 필요하며, 이렇게 사용된 시뮬레이션은 출력분석에 사용되지 않기 때문에 시간적인 손실이 크게 된다.
현재 다양한 4차산업의 주요기술로는 빅데이터, 사물인터넷, 인공지능, 블록체인, 혼합현실(MR), 드론 등이 대표적인 기술들이다. 특히 최근에 세계적인 기술적 트랜드로 자리 잡고 있는 "디지털 트윈(digital twin)은 물리적인 사물과 컴퓨터에 동일하게 표현되는 가상 모델의 개념으로서. 실제 물리적인 자산 대신 소프트웨어로 가상화한 자산의 Digital twin을 만들어 모의실험함으로써 실제 농작업의 특성(현재 상태, 농업생산성, 농작업 시나리오, 등)에 대한 정확한 정보를 얻을 수 있다. 본 연구에서는 노지노업 주산지에 대한 디지털 트윈 데이터를 구축하고 스마트팜 단지를 설계 및 구축하여, 통합관제시스템 운영을 통해 자동 물관리, 원격생육예찰, 드론방제, 병충해 예찰작업 등으로 농작업을 효율화하고자 한다. 또한, 빅데이터 분석을 통한 적정량의 비료·농약사용으로 환경적 부하를 최소화하여, 노동력절감, 농작물 생산성을 향상할 수 있는 디지털 환경제어농업을 국내에 보급하고자 한다. 이러한 노지농업 기술은 디지털 농작업 및 재배관리 등 으로 노동력이 절감되고, 기후변화에 대비한 물이용 최적화와 토양오염예방 효과를 기대할 수 있으며, 전국 재배환경 디지털 데이터 확보를 통한 노지작물의 정량적인 생육관리가 가능하게 된다. 또한 농업생산성 향상을 통한 탄소중립 RED++ 활동을 직접적으로 실천을 할 수 있는 방안이다. 취득된 고정밀·고화질 영상기반 농작물 생육데이터취득을 통한 생육현황 분석과 예측은 디지털 영농작업관리에 매우 효과적이다. 실제 국립식량과학원 남부작물부에서는 지중점적, 땅속배수 등 다양한 종류의 노지스마트팜 연구개발을 진행하였다. 특히, 올해부터는 전국농업기술원 단지를 대상으로 노지스마트팜 시설 구축 및 기술 보급을 통한 사업화를 본격적으로 진행하고 있다. 본 연구에서는 디지털 트윈 기술과 노지스마트팜 기술을 융합한 농업분야 구축사례와 향후 활용방안에 대하여 서술하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.