• Title/Summary/Keyword: 자동 사고감지 알고리즘

Search Result 13, Processing Time 0.017 seconds

Design of a Displacement and Velocity Measurement System Based on Environmental Characteristic Analysis of Laser Sensors for Automatic Mooring Devices (레이저 센서의 환경적 특성 분석에 기반한 선박 자동계류장치용 변위 및 속도 측정시스템 설계)

  • Jin-Man Kim;Heon-Hui Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.980-991
    • /
    • 2023
  • To prevent accidents near the quay caused by a ship, ports are generally designed and constructed through navigation and berthing safety assessment. However, unpredictable accidents such as ship collisions with the quay or personal accidents caused by ropes still occur sometimes during the ship berthing or mooring process. Automatic mooring systems, which are equipped with an attachment mechanism composed of robotic manipulators and vacuum pads, are designed for rapid and safe mooring of ships. This paper deals with a displacement and velocity measurement system for the automatic mooring device, which is essential for the position and speed control of the vacuum pads. To design a suitable system for an automatic mooring device, we first analyze the sensor's performance and outdoor environmental characteristics. Based on the analysis results, we describe the configuration and design methods of a displacement and velocity measurement system for application in outdoor environments. Additionally, several algorithms for detecting the sensor's state and estimating a ship's velocity are developed. The proposed method is verified through some experiments for displacement and speed measurement targeted at a moving object with constant speed.

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.