• 제목/요약/키워드: 자동 분할

Search Result 1,002, Processing Time 0.028 seconds

Automatic Detection of Pulmonary Embolism in Spiral CT Angiography (나선형 CT 혈관촬영의 폐색전증 자동 검출)

  • Han, Jae-Bok;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.703-706
    • /
    • 2004
  • 나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.

  • PDF

The Method of Episode Segmentation using Tagging-Icon on Video of Omnibus Type (옴니버스 형태의 동영상에서 태깅아이콘을 이용한 에피소스 분할 방법)

  • Joo, Sung-Il;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.117-119
    • /
    • 2010
  • 본 논문에서는 옴니버스 형태의 동영상을 각 프로그램 별로 자동 분할하는 방법에 대해 제안하고자 한다. 국내 TV 프로그램의 경우 대부분의 개그 프로그램에서는 코너 별로 상단 또는 하단의 일정 위치에 코너명을 캡션으로 삽입하여 옴니버스 형태의 영상을 서비스한다. 이러한 코너명을 태깅아이콘으로 하여 지속되는 구간을 검출하여 시작시점과 종료시점을 검출함으로써 동영상을 의미적으로 분할 할 수 있다. 하지만 태깅아이콘의 경우 매우 높은 투명도를 갖는 경우가 많으므로 본 연구에서는 에지와 시간적인 지속성을 이용하여 에피소드를 분할하는 방법을 제안하고, 옴니버스 형태의 다양한 개그 프로그램에 대해 실험하여 제안한 방법의 우수성을 보인다.

  • PDF

A Method of Generating Table-of-Contents for Educational Video (교육용 비디오의 ToC 자동 생성 방법)

  • Lee Gwang-Gook;Kang Jung-Won;Kim Jae-Gon;Kim Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.28-41
    • /
    • 2006
  • Due to the rapid development of multimedia appliances, the increasing amount of multimedia data enforces the development of automatic video analysis techniques. In this paper, a method of ToC generation is proposed for educational video contents. The proposed method consists of two parts: scene segmentation followed by scene annotation. First, video sequence is divided into scenes by the proposed scene segmentation algorithm utilizing the characteristics of educational video. Then each shot in the scene is annotated in terms of scene type, existence of enclosed caption and main speaker of the shot. The ToC generated by the proposed method represents the structure of a video by the hierarchy of scenes and shots and gives description of each scene and shot by extracted features. Hence the generated ToC can help users to perceive the content of a video at a glance and. to access a desired position of a video easily. Also, the generated ToC automatically by the system can be further edited manually for the refinement to effectively reduce the required time achieving more detailed description of the video content. The experimental result showed that the proposed method can generate ToC for educational video with high accuracy.

Automatic Extraction of Roof Components from LiDAR Data Based on Octree Segmentation (LiDAR 데이터를 이용한 옥트리 분할 기반의 지붕요소 자동추출)

  • Song, Nak-Hyeon;Cho, Hong-Beom;Cho, Woo-Sug;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The 3D building modeling is one of crucial components in building 3D geospatial information. The existing methods for 3D building modeling depend mainly on manual photogrammetric processes by stereoplotter compiler, which indeed take great amount of time and efforts. In addition, some automatic methods that were proposed in research papers and experimental trials have limitations of describing the details of buildings with lack of geometric accuracy. It is essential in automatic fashion that the boundary and shape of buildings should be drawn effortlessly by a sophisticated algorithm. In recent years, airborne LiDAR data representing earth surface in 3D has been utilized in many different fields. However, it is still in technical difficulties for clean and correct boundary extraction without human intervention. The usage of airborne LiDAR data will be much feasible to reconstruct the roof tops of buildings whose boundary lines could be taken out from existing digital maps. The paper proposed a method to reconstruct the roof tops of buildings using airborne LiDAR data with building boundary lines from digital map. The primary process is to perform octree-based segmentation to airborne LiDAR data recursively in 3D space till there are no more airborne LiDAR points to be segmented. Once the octree-based segmentation has been completed, each segmented patch is thereafter merged based on geometric spatial characteristics. The experimental results showed that the proposed method were capable of extracting various building roof components such as plane, gable, polyhedric and curved surface.

Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules (결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할)

  • 김봉근;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.28-43
    • /
    • 1995
  • This paper concerns with automatic generation of fuzzy rules which can be used for pattern classification. Feature space is recursively subdivided into hyperspheres, and each hypersphere is represented by its centroid and bounding distance. Fuzzy rules are then generated based on the constructed hyperspheres. The resulting fuzzy rules have very simple premise parts, and they can be organized into a hierarchical structure so that classification process can be implemented very rapidly. The experimented results show that the suggested method works very well compared to other methods.

  • PDF

Implementation of OMR Answer Paper Scoring Method Using Image Processing Method (영상처리기법을 활용한 OMR 답안지 채점방법의 구현)

  • Kwon, Hiok-Han;Hwang, Gi-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • In this paper, an automatic scoring system of the OMR answer sheet is implemented using Gray Scale and image segmentation method. The proposed method was used to extract the OMR data on multiple-choice answer sheet from captured image. In addition, On-line scoring system is developed and implemented to mark the short-answer type on the reverse side. Therefore, teachers can mark the short-answer type for anytime and anywhere within the available time. There were many advantages to mark of the multiple-choice answer sheet without additional OMR reader. In the future, the grading of short-answer type will be more efficient if it were performed by using an automatic scoring system based on image processing.

Brain MRI Semi-Automatic Segmentation Algorithm for Medical Image Contents (의료영상 콘텐츠의 뇌 MR영상 반자동 영역 분할 알고리즘)

  • Kim Sin-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.45-51
    • /
    • 2005
  • This paper emphasizes on the accomplishment of compensated proton density image and T2 weighted image taken from the shrinkage surface of the Brain. From the images, the Brain's surface shrinkage in the normal image and the surface shrinkage in the abnormal image can be observed. After the separation of white matter, gray matter, and CSF, this algorithm calculates the volume of each of them automatically. Results are subdivided into particular ages and saved in the database to be analyzed and to be processed statistically. Therefore, by using this algorithm the normal and abnormal stages can be detected in the early stages to diagnose. This result easily discernment Alzheimer patient and is useful for Alzheimer diagnostic and early detection.

  • PDF

Detection of Defects on Welding Area Using Image Processing (영상처리를 이용한 용접부 결함의 자동 검출)

  • Kim, Eun-Seok;Joo, Ki-See;Jang, Bog-Ju;Kang, Kyeang-Yeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.944-951
    • /
    • 2009
  • In this paper, we use image processing algorithms to detect the defects existed on a welding area automatically. It is difficult to detect the welding defects because it is sensitive to lights and has irregular patterns. For this reason, images are captured with 2 kinds of illumination condition, and are processed by 2 different algorithms for each image. The first algorithm separates some ROI's from the captured image and compares the similarity of intensity between each divided region. The second algorithm extracts boundary information from the processed image by the first algorithm, and calculates the length of boundary, curvature and base line area based on boundary information. The proposed method showed high performance in detection and classification of defects.

Auto Correction Technique of Photography Composition Using ROI Extraction Method (ROI 추출을 통한 사진 구도 자동 보정 기법)

  • Ha, Ho-Saeng;Park, Dae-Hyun;Kim, Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.113-122
    • /
    • 2013
  • In this paper, we propose the method that automatically corrects the composition of a picture stylishly as well as reliably by cropping pictures based on the Rule of Thirds. The region of interest (ROI) is extracted from a picture by applying the Saliency Map and the Image Segmentation technology, the composition of the photo is amended based on this area to satisfy the Rule of Thirds. In addition, since the face region of the person is added to ROI by the Face Detection technique and the composition is amended by the various scenario according to ROI, the little more natural picture is acquired. The experimental result shows that the photo of the corrected composition was naturally amended compared with the original photo.

Extraction of the shape feature according to the risk area of the segmented tumor region based on the small-animal PET (소동물 PET기반 종양분할영역 위험구간변화에 따른 형태특성추출)

  • Lee Joung-Min;Kim Hyeong-Min;Kim Myoung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.376-378
    • /
    • 2006
  • 본 논문에서는 소동물 양전자방출단층촬영 영상(Positron Emission Tomography, PET) 내 종양영역을 자동분할하고 분할된 윤곽선주변의 기하학적 위험구간에 따른 종양의 형태특성을 분석하기 위한 방법을 제시한다. PET 영상내 검출된 종양영역의 신뢰성을 위해 위음성(False negative, FN) 및 위양성(False positive, FP)의 위험구간을 같이 제공하는 것이 필요하다. 따라서, 방사선 특이적 특성이 반영된 명암값을 기반으로 Fuzzy C-Means(FCM) 클러스터링을 수행하여 종양영역을 자동 분할한다. 분활된 종양영역의 위험구간은 클러스터 간 공유되는 영역의 소속값을 이용하여 위음성, 위양성을 계산한다. 또한, 임의의 소속값 임계치 변화를 통해 위험구간의 변화에 따른 종양의 형태적 특성변화를 관측한다. 이러한 지역적 변화의 관측을 통해 위험구간의 형태학적 위치를 판단할 수 있어 위험구간에 따른 추가적인 잔여 암의 위치 및 형태 파악을 용이하게 한다.

  • PDF