• Title/Summary/Keyword: 자동 건물 매칭

Search Result 14, Processing Time 0.024 seconds

Automatic Matching of Building Polygon Dataset from Digital Maps Using Hierarchical Matching Algorithm (계층적 매칭 기법을 이용한 수치지도 건물 폴리곤 데이터의 자동 정합에 관한 연구)

  • Yeom, Junho;Kim, Yongil;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The interoperability of multi-source data has become more important due to various digital maps, produced from public institutions and enterprises. In this study, the automatic matching algorithm of multi-source building data using hierarchical matching was proposed. At first, we divide digital maps into blocks and perform the primary geometric registration of buildings with the ICP algorithm. Then, corresponding building pairs were determined by evaluating the similarity of overlap area, and the matching threshold value of similarity was automatically derived by the Otsu binary thresholding. After the first matching, we extracted error matching candidates buildings which are similar with threshold value to conduct the secondary ICP matching and to make a matching decision using turning angle function analysis. For the evaluation, the proposed method was applied to representative public digital maps, road name address map and digital topographic map 2.0. As a result, the F measures of matching and non-matching buildings increased by 2% and 17%, respectively. Therefore, the proposed method is efficient for the matching of building polygons from multi-source digital maps.

A new method for automatic areal feature matching based on shape similarity using CRITIC method (CRITIC 방법을 이용한 형상유사도 기반의 면 객체 자동매칭 방법)

  • Kim, Ji-Young;Huh, Yong;Kim, Doe-Sung;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2011
  • In this paper, we proposed the method automatically to match areal feature based on similarity using spatial information. For this, we extracted candidate matching pairs intersected between two different spatial datasets, and then measured a shape similarity, which is calculated by an weight sum method of each matching criterion automatically derived from CRITIC method. In this time, matching pairs were selected when similarity is more than a threshold determined by outliers detection of adjusted boxplot from training data. After applying this method to two distinct spatial datasets: a digital topographic map and street-name address base map, we conformed that buildings were matched, that shape is similar and a large area is overlaid in visual evaluation, and F-Measure is highly 0.932 in statistical evaluation.

Semi-automatic Building Area Extraction based on Improved Snake Model (개선된 스네이크 모텔에 기반한 반자동 건물 영역 추출)

  • Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Terrain, building location and area, and building shape information is in need of implementing 3D map. This paper proposes a method of extracting a building area by an improved semi-automatic snake algorithm. The method consists of 3-stage: pre-processing, initializing control points, and applying an improved snake algorithm. In the first stage, after transforming a satellite image to a gray image and detecting the approximate edge of the gray image, the method combines the gray image and the edge. In the second stage, the user looks for the center point of a building and the system sets the circular or rectangular initial control points by an procedural method. In the third stage, the enhanced snake algorithm extracts the building area. In particular, this paper sets the one tenn of the snake in a new way in order to use the proposed method for specializing building area extraction. Finally, this paper evaluated the performance of the proposed method using sky view satellite image and it showed that the matching percentage to the exact building area is 75%.

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

Automatic Co-registration of Existing Building Models and Digital Image (건물 모델과 디지털 영상간의 자동정합 방법)

  • Jung, Jae-Wook;Sohn, Gun-Ho;Armenakis, Costas
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • With recent advancement of remote sensing technology, a variety of data acquisition over the same area is achievable. An automated co-registration of heterogeneous airborne images is a critical step for change detection. This paper describes an automatic method for co-registration between digital image and existing building model. Optimal building models for co-registration purpose are extracted as primitives from existing building model database. A set of homologous features between straight lines extracted from aerial digital image and model primitive are computed based on geometric similarity function. With obtained homologous features, EO parameter is recomputed using least square method. The result shows that die suggested method automatically co-register two data set in a reliable manner.

Graph Topology Design for Generating Building Database and Implementation of Pattern Matching (건물 데이터베이스 구축을 위한 그래프 토폴로지 설계 및 패턴매칭 구현)

  • Choi, Hyo-Seok;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.411-419
    • /
    • 2013
  • Research on developing algorithms for building modeling such as extracting outlines of the buildings and segmenting patches of the roofs using aerial images or LiDAR data are active. However, utilizing information from the building model is not well implemented yet. This study aims to propose a scheme for search identical or similar shape of buildings by utilizing graph topology pattern matching under the assumptions: (1) Buildings were modeled beforehand using imagery or LiDAR data, or (2) 3D building data from digital maps are available. Side walls, segmented roofs and footprints were represented as nodes, and relationships among the nodes were defined using graph topology. Topology graph database was generated and pattern matching was performed with buildings of various shapes. The results show that efficiency of the proposed method in terms of reliability of matching and database structure. In addition, flexibility in the search was achieved by altering conditions for the pattern matching. Furthermore, topology graph representation could be used as scale and rotation invariant shape descriptor.

Extraction and Revision of Building Information from Single High Resolution Image and Digital Map (단일 고해상도 위성영상과 수치지도로부터 건물 정보 추출 및 갱신)

  • Byun, Young-Gi;Kim, Hye-Jin;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • In this paper, we propose a method aiming at updating the building information of the digital maps using single high resolution satellite image and digital map. Firstly we produced a digital orthoimage through the automatic co-registration of QuickBird image and 1:1,000 digital map. Secondly we extracted building height information through the template matching of digital map's building vector data and the image's edges obtained by Canny operator. Finally we refined the shape of some buildings by using the result from template matching as the seed polygon of the greedy snake algorithm. In order to evaluate the proposed method's effectiveness, we estimated accuracy of the extracted building information using LiDAR DSM and 1:1,000 digital map. The evaluation results showed the proposed method has a good potential for extraction and revision of building information.

Updating Building Data in Digital Topographic Map Based on Matching and Generation of Update History Record (수치지도 건물데이터의 매칭 기반 갱신 및 이력 데이터 생성)

  • Park, Seul A;Yu, Ki Yun;Park, Woo Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.311-318
    • /
    • 2014
  • The data of buildings and structures take over large portions of the mapping database with large numbers. Furthermore, those shapes and attributes of building data continuously change over time. Due to those factors, the efficient methodology of updating database for following the most recent data become necessarily. This study has purposed on extracting needed data, which has been changed, by using overlaying analysis of new and old dataset, during updating processes. Following to procedures, we firstly searched for matching pairs of objects from each dataset, and defined the classification algorithm for building updating cases by comparing; those of shape updating cases are divided into 8 cases, while those of attribute updating cases are divided into 4 cases. Also, two updated dataset are set to be automatically saved. For the study, we selected few guidelines; the layer of digital topographic map 1:5000 for the targeted updating data, the building layer of Korea Address Information System map for the reference data, as well as build-up areas in Gwanak-gu, Seoul for the test area. The result of study updated 82.1% in shape and 34.5% in attribute building objects among all.

Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images (강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험)

  • Jeon, Min-Cheol;Eo, Yang-Dam;Han, Dong-Yeob;Kang, Nam-Gi;Pyeon, Mu-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • This study used the keypoint observed simultaneously on two images and on twodimensional intensity image data, which was obtained along with the two point clouds data that were approached for automatic focus among points on terrestrial LiDAR data, and selected matching point through SIFT algorithm. Also, for matching error diploid, RANSAC algorithm was applied to improve the accuracy of focus. As calculating the degree of three-dimensional rotating transformation, which is the transformation-type parameters between two points, and also the moving amounts of vertical/horizontal, the result was compared with the existing result by hand. As testing the building of College of Science at Konkuk University, the difference of the transformation parameters between the one through automatic matching and the one by hand showed 0.011m, 0.008m, and 0.052m in X, Y, Z directions, which concluded to be used as the data for automatic focus.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.