• Title/Summary/Keyword: 자동회귀모델

Search Result 55, Processing Time 0.024 seconds

Non-autoregressive Multi Decoders for Korean Morphological Analysis (비자동회귀 다중 디코더 기반 한국어 형태소 분석)

  • Seongmin Cho;Hyun-Je Song
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.418-423
    • /
    • 2022
  • 한국어 형태소 분석은 자연어 처리의 기초가 되는 태스크이므로 빠르게 결과를 출력해야 한다. 기존연구는 자동회귀 모델을 한국어 형태소 분석에 적용하여 좋은 성능을 기록하였다. 하지만 자동회귀 모델은 느리다는 단점이 있고, 이 문제를 극복하기 위해 비자동회귀 모델을 사용할 수 있다. 비자동회귀 모델을 한국어 형태소 분석에 적용하면 조화롭지 않은 시퀀스 문제와 토큰 반복 문제가 발생한다. 본 논문에서는 두 문제를 해결하기 위하여 다중 디코더 기반의 한국어 형태소 분석을 제안한다. 조화롭지 않은 시퀀스는 다중 디코더를 적용함으로써, 토큰 반복 문제는 두 개의 디코더에 서로 어텐션을 적용하여 문제를 완화할 수 있다. 본 논문에서 제안한 모델은 세종 형태소 분석 말뭉치를 대상으로 좋은 성능을 확보하면서 빠르게 결과를 생성할 수 있음을 실험적으로 보였다.

  • PDF

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features (음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템)

  • Lee, Ju-Hwan;Kim, Jin-Young;Jeong, Dong-Ki;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • In this paper, we propose a music classification system according to user emotions using Electroencephalogram (EEG) features that appear when listening to music. In the proposed system, the relationship between the emotional EEG features extracted from EEG signals and the auditory features extracted from music signals is learned through a deep regression neural network. The proposed system based on the regression model automatically generates EEG features mapped to the auditory characteristics of the input music, and automatically classifies music by applying these features to an attention-based deep neural network. The experimental results suggest the music classification accuracy of the proposed automatic music classification framework.

Prediction Service of Wild Animal Intrusions to the Farm Field based on VAR Model (VAR 모델을 이용한 야생 동물의 농장 침입 예측 서비스)

  • Kadam, Ashwini L.;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.628-636
    • /
    • 2021
  • This paper contains the implementation and performance evaluation results of a system that collects environmental data at the time when the wild animal intrusion occurred at farms and then predicts future wild animal intrusions through a machine learning-based Vector Autoregression(VAR) model. To collect the data for intrusion prediction, an IoT-based hardware prototype was developed, which was installed on a small farm located near the school and simulated over a long period to generate intrusion events. The intrusion prediction service based on the implemented VAR model provides the date and time when intrusion is likely to occur over the next 30 days. In addition, the proposed system includes the function of providing real-time notifications to the farmers mobile device when wild animals intrusion occurs in the farm, and performance evaluation was conducted to confirm that the average response time was 7.89 seconds.

Automatic Multi-layer Stacking Ensemble Generation Technique for Predicting Diabetes Mellitus Incidence (당뇨병 발생 예측을 위한 다층 스태킹 앙상블 모델 구축 기법)

  • Ayeong Seong;Sohyun Yun;Suyeon Kang;Gun-Woo Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.426-427
    • /
    • 2023
  • 최근 현대인의 식습관 및 고령화로 인해 당뇨병 환자의 수가 연간 증가하고 있다. 따라서 현재는 아직 당뇨병이 발생하지 않았더라도 미래에 발생할 가능성 예측의 중요성이 커지고 있다. 기존의 당뇨병 발생 여부 진단 연구는 회귀 분석과 같은 단일 모델을 사용하여 수행된다. 그러나 당뇨병에 영향을 미치는 변수들은 복잡하게 얽혀있어 단일 모델만으로는 패턴을 충분히 학습하기 어렵다. 본 논문에서는 데이터에 적합하게 자동으로 다층 스태킹 앙상블 모델을 구성하는 알고리즘을 이용한 다층 스태킹 앙상블 모델을 제안한다. 제안하는 방법은 성능이 높은 모델들을 기준으로 층을 쌓으며 모델을 구성하며 실험 결과 다른 자동 기계학습 라이브러리와 비교해 F1 score 기준으로 최대 12.89%p의 성능 향상을 보였다.

Comparison of Automatic Score Range Prediction of Korean Essays Using KoBERT, Naive Bayes & Logistic Regression (KoBERT, 나이브 베이즈, 로지스틱 회귀의 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Cha, Junwoo;Yi, Yumi
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.501-504
    • /
    • 2021
  • 한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.

Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis (커널회귀 모델기반 가스터빈 축진동 신호이상 분석)

  • Kim, Yeonwhan;Kim, Donghwan;Park, SunHwi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, the kernel regression model is applied for the case study of gas turbine abnormal state analysis. In addition to vibration analysis at the remote site, the kernel regression model technique can is useful for analyzing abnormal state of rotor vibration signals of gas turbine in power plant. In monitoring based on data-driven techniques correlated measurements, the fault free training data of shaft vibration obtained during normal operations of gas turbine are used to develop a empirical model based on auto-associative kernel regression. This data-driven model can be used to predict virtual measurements, which are compared with real-time data, generating residuals. Any faults in the system may cause statistically abnormal changes in these residuals and could be detected. As the result, the kernel regression model provides information that can distinguish anomalies such as sensor failure in a shaft vibration signal.

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.