• 제목/요약/키워드: 자동회귀누적이동평균모델

검색결과 2건 처리시간 0.019초

동적요인모형에 기반한 한국의 GDP 성장률 예측 (Forecasting Korea's GDP growth rate based on the dynamic factor model)

  • 이경서;임예지
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.255-263
    • /
    • 2024
  • GDP는 한 나라의 가계, 기업, 정부 등 모든 경제 주체가 일정 기간 동안 창출한 재화와 서비스의 시장 가치의 합을 나타낸다. GDP를 통하여 국가의 경제 규모를 파악할 수 있으며, 정부의 정책 방향에 영향을 미치는 대표적인 경제 지표이므로 이에 대한 연구가 다양하게 이루어지고 있다. 본 논문에서는 G20 국가들의 주요 거시경제 지표를 활용하여 dynamic factor model 기반의 GDP 성장률 예측 모델을 제시하였다. 추출된 factor를 다양한 회귀분석 방법론과 결합하여 그 결과들을 비교하였으며, 기존의 전통적인 시계열 예측방법인 ARIMA 모델, common component를 이용한 예측 등도 함께 비교하였다. COVID 이후 지표의 변동성이 큰 점을 고려하여 예측 시기를 COVID 전후로 나누었으며, 그 결과 factor에 대해 ridge regression과 lasso regression을 적용하여 예측한 경우 가장 좋은 성능을 나타내었다.

시뮬레이션 출력의 안정상태 온라인 결정에 관한 연구 (On-Line Determination Steady State in Simulation Output)

  • 이영해;정창식;경규형
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1996년도 춘계학술대회
    • /
    • pp.1-3
    • /
    • 1996
  • 시뮬레이션 기법을 이용한 시스템의 분석에 있어서 실험의 자동화는 현재 많은 연구와 개발이 진행 중인 분야이다. 컴퓨터와 정보통신 시스템에 대한 시뮬레이션의 예를 들어 보면, 수많은 모델을 대한 시뮬레이션을 수행할 경우 자동화된 실험의 제어가 요구되고 있다. 시뮬레이션 수행회수, 수행길이, 데이터 수집방법 등과 관련하여 시뮬레이션 실험방법이 자동화가 되지 않으면, 시뮬레이션 실험에 필요한 시간과 인적 자원이 상당히 커지게 되며 출력데이터에 대한 분석에 있어서도 어려움이 따르게 된다. 시뮬레이션 실험방법을 자동화하면서 효율적인 시뮬레이션 출력분석을 위해서는 시뮬레이션을 수행하는 경우에 항상 발생하는 초기편의 (initial bias)를 제거하는 문제가 선결되어야 한다. 시뮬레이션 출력분석에 사용되는 데이터들이 초기편의를 반영하지 않는 안정상태에서 수집된 것이어야만 실제 시스템에 대한 올바른 해석이 가능하다. 실제로 시뮬레이션 출력분석과 관련하여 가장 중요하면서도 어려운 문제는 시뮬레이션의 출력데이터가 이루는 추계적 과정 (stochastic process)의 안정상태 평균과 이 평균에 대한 신뢰구간(confidence interval: c. i.)을 구하는 것이다. 한 신뢰구간에 포함되어 있는 정보는 의사결정자에게 얼마나 정확하게 평균을 추정할 구 있는지 알려 준다. 그러나, 신뢰구간을 구성하는 일은 하나의 시뮬레이션으로부터 얻어진 출력데이터가 일반적으로 비정체상태(nonstationary)이고 자동상관(autocorrelated)되어 있기 때문에, 전통적인 통계적인 기법을 직접적으로 이용할 수 없다. 이러한 문제를 해결하기 위해 시뮬레이션 출력데이터 분석기법이 사용된다.본 논문에서는 초기편의를 제거하기 위해서 필요한 출력데이터의 제거시점을 찾는 새로운 기법으로, 유클리드 거리(Euclidean distance: ED)를 이용한 방법과 현재 패턴 분류(pattern classification) 문제에 널리 사용 중인 역전파 신경망(backpropagation neural networks: BNN) 알고리듬을 이용하는 방법을 제시한다. 이 기법들은 대다수의 기존의 기법과는 달리 시험수행(pilot run)이 필요 없으며, 시뮬레이션의 단일수행(single run) 중에 제거시점을 결정할 수 있다. 제거시점과 관련된 기존 연구는 다음과 같다. 콘웨이방법은 현재의 데이터가 이후 데이터의 최대값이나 최소값이 아니면 이 데이터를 제거시점으로 결정하는데, 알고기듬 구조상 온라인으로 제거시점 결정이 불가능하다. 콘웨이방법이 알고리듬의 성격상 온라인이 불가능한 반면, 수정콘웨이방법 (Modified Conway Rule: MCR)은 현재의 데이터가 이전 데이터와 비교했을 때 최대값이나 최소값이 아닌 경우 현재의 데이터를 제거시점으로 결정하기 때문에 온라인이 가능하다. 평균교차방법(Crossings-of-the-Mean Rule: CMR)은 누적평균을 이용하면서 이 평균을 중심으로 관측치가 위에서 아래로, 또는 아래서 위로 교차하는 회수로 결정한다. 이 기법을 사용하려면 교차회수를 결정해야 하는데, 일반적으로 결정된 교차회수가 시스템에 상관없이 일반적으로 적용가능하지 않다는 문제점이 있다. 누적평균방법(Cumulative-Mean Rule: CMR2)은 여러 번의 시험수행을 통해서 얻어진 출력데이터에 대한 총누적평균(grand cumulative mean)을 그래프로 그린 다음, 안정상태인 점을 육안으로 결정한다. 이 방법은 여러 번의 시뮬레이션을 수행에서 얻어진 데이터들의 평균들에 대한 누적평균을 사용하기 매문에 온라인 제거시점 결정이 불가능하며, 작업자가 그래프를 보고 임의로 결정해야 하는 단점이 있다. Welch방법(Welch's Method: WM)은 브라운 브리지(Brownian bridge) 통계량()을 사용하는데, n이 무한에 가까워질 때, 이 브라운 브리지 분포(Brownian bridge distribution)에 수렴하는 성질을 이용한다. 시뮬레이션 출력데이터를 가지고 배치를 구성한 후 하나의 배치를 표본으로 사용한다. 이 기법은 알고리듬이 복잡하고, 값을 추정해야 하는 단점이 있다. Law-Kelton방법(Law-Kelton's Method: LKM)은 회귀 (regression)이론에 기초하는데, 시뮬레이션이 종료된 후 누적평균데이터에 대해서 회귀직선을 적합(fitting)시킨다. 회귀직선의 기울기가 0이라는 귀무가설이 채택되면 그 시점을 제거시점으로 결정한다. 일단 시뮬레이션이 종료된 다음, 데이터가 모아진 순서의 반대 순서로 데이터를 이용하기 때문에 온라인이 불가능하다. Welch절차(Welch's Procedure: WP)는 5회이상의 시뮬레이션수행을 통해 수집한 데이터의 이동평균을 이용해서 시각적으로 제거시점을 결정해야 하며, 반복제거방법을 사용해야 하기 때문에 온라인 제거시점의 결정이 불가능하다. 또한, 한번에 이동할 데이터의 크기(window size)를 결정해야 한다. 지금까지 알아 본 것처럼, 기존의 방법들은 시뮬레이션의 단일 수행 중의 온라인 제거시점 결정의 관점에서는 미약한 면이 있다. 또한, 현재의 시뮬레이션 상용소프트웨어는 작업자로 하여금 제거시점을 임의로 결정하도록 하기 때문에, 실험중인 시스템에 대해서 정확하고도 정량적으로 제거시점을 결정할 수 없게 되어 있다. 사용자가 임의로 제거시점을 결정하게 되면, 초기편의 문제를 효과적으로 해결하기 어려울 뿐만 아니라, 필요 이상으로 너무 많은 양을 제거하거나 초기편의를 해결하지 못할 만큼 너무 적은 양을 제거할 가능성이 커지게 된다. 또한, 기존의 방법들의 대부분은 제거시점을 찾기 위해서 시험수행이 필요하다. 즉, 안정상태 시점만을 찾기 위한 시뮬레이션 수행이 필요하며, 이렇게 사용된 시뮬레이션은 출력분석에 사용되지 않기 때문에 시간적인 손실이 크게 된다.

  • PDF