• 제목/요약/키워드: 자동화된 웹쉘 탐지시스템

검색결과 2건 처리시간 0.016초

머신러닝기반의 지도학습과 분류 알고리즘을 적용한 웹쉘 탐지시스템(MWSDS)제안 연구 (Proposal and empirical study of web shell detection system (MWSDS) applying machine learning-based supervised learning and classification)

  • 김기환;이상도;신용태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.49-50
    • /
    • 2024
  • 본 논문에서는 웹쉘 악성코드를 정확하게 분류하고, 빠른시간안에 자동으로 웹쉘 분류 및 분석을 통하여 웹쉘을 탐지하기 위하여 인공지능 머신러닝 기반의 Supervised AI ML 및 Classification 알고리즘을 적용하여 빠른 시간안에 분류, 정확한 분석을 통하여 자동화된 탐지시스템인 MWSDS를 제안하고 웹쉘 실험 데이터를 통하여 실증하였다. 본제안의 경우 웹쉘악성코드 공격에 대한 대응뿐만아니라 관리적인 정보보호 체계수립을 통하여 보다 효과적이며, 지속적으로 대응할 수 있을 것으로 전망된다.

  • PDF

웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구 (A study on machine learning-based defense system proposal through web shell collection and analysis)

  • 김기환;신용태
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.87-94
    • /
    • 2022
  • 최근 정보통신 인프라의 발달로 인터넷접속 디바이스가 급속하게 늘어나고 있는 실정이다. 스마트폰, 노트북, 컴퓨터, IoT디바이스까지 인터넷접속을 통하여 정보통신서비스를 받고 있는 것이다. 디바이스 운영환경이 대부분이 웹(WEB)으로 이루어져 있는 관계로 웹쉘을 이용한 웹사이버 공격에 취약하다. 웹쉘이 웹 서버에 업로드 될 경우 웹 서버의 제어가 손쉽게 이루어 질 수 있어서 공격빈도가 높은 것으로 확인된다. 웹쉘로 인한 피해가 많이 발생하면서 각 기업에서는 침입차단시스템, 방화벽, 웹방화벽등 다양한 보안장비로 공격에 대응하고 있지만, 현재 출시되는 대부분의 웹쉘 대응 장비는 패턴 기반으로 탐지가 이루어지기 때문에 웹쉘 변종에 있어서는 탐지가 어려우며 이런 특성으로 웹쉘 공격의 예방 및 대처하기 위해서는 기존의 체계와 보안소프트웨어만 가지고 대응 하기에는 힘든 상황이 현실이다. 이에 인공지능 머신러닝 과 딥러닝기법을 활용하여 알려지지 않은 웹쉘을 사전에 탐지하는 등 신규 사이버 공격에 대하여 대처 할 수 있는 인공지능 머신러닝 기반의 웹쉘 수집 및 분석을 통하여 자동화된 웹쉘 방어시스템에 대하여 제안하고자 한다. 본 논문에서 제안하는 머시러닝기반 웹쉘 방어시스템 모델은 웹환경에 대한 사이버공격중의 하나인 악성 웹쉘에 대하여 수집, 분석, 탐지를 빠르게 하여,안전한 인터넷환경구축 및 운영시 필수적으로 적용이 필요한 웹정보보안 시스템 설계,구축에 많은 도움이 될 것으로 생각한다.