• Title/Summary/Keyword: 자동차 플랜트

Search Result 50, Processing Time 0.026 seconds

A Study on the Automatic Seam Tracking of Triangular Wave Form (삼각파 형태의 용접선 자동추적에 관한 연구)

  • Bae Cherl-O;Kim Hyun-Su;Ahn Byong-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.151-155
    • /
    • 2006
  • In these days, welding is the most commonly used metallic connection technology and also is the fundamental production technology of the modem industrial, which is used in various areas of the industrial fields, such as shipbuilding, automobiles, airplanes and plant facilities. However welding process produces strong light, electric currents, and fume gases etc., and the welding automation is not so easy compared to the other works of manufacturing industries which produce the standardized products in large quantities. So it is difficult to weld and detect the all kinds of seams automatically by a specific sensor. In this paper the sensor applying strain gauges is used to detect the seams of triangular wave form. With the auto carriage having the sensor we proposed the experiment to weld and track the seam automatically.

  • PDF

A Study on Actual Conditions of Industrial Safety Regulations - Based on Petrochemical Plant - (산업현장에서의 안전규제 적용실태 연구 - 석유화학공장을 중심으로 -)

  • Oh, Hyeong-Geun;Baek, Dong-Seung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Without a special mineral resources in Korea, such as petrochemical industries, electronics and automotive industries to supply the basic material, but remains a key industry locations. Gongjeongsang dealing with hazardous materials, such as a fire or explosion hazard, and from this site sangjonhae safety regulations to protect human and material disaster prevention activities are focused. However, depending on the actual implementation of standardized safety regulations as necessary if not originally intended, proper objectivity and reliability of safety regulations, as well as impaired resulting in a waste of public and private administrative power and petrochemical industries and the competitiveness of the entire drop factor will. Accordingly, this study petrochemical plant is applied to a representative safety regulations, items for their safety are needed and these regulations as being implemented that was identified, according to a study, some of the need for regulation and implementation both in terms of reliability was low.

Numerical Analysis Study on Micro-plastic Particle behavior According to the Shape of Cyclone Separator (Cyclone separator의 형상에 따른 미세플라스틱 입자 거동 수치해석 연구)

  • Insun Kang;Wonjun Seo;Dongho Yu;Yeongshik Kim;Hyeungchul Kim;Seokyeon Im
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.61-66
    • /
    • 2024
  • Micro-plastics are synthetic high-differentiation chemicals of less than 5mm in size, and are deposited not only on the sea surface but also on the coast. If these micro-plastics are not properly separated from the sand, they can threaten marine ecosystems. Thus, in the present study, we aimed to apply cyclone separator to the micro-plastic retrieval in order to predict the movement of particles according to the formation of the cyclone separator by applying the centrifugal force of the particle in accordance with the rotational movement of the air. The cyclone separator has three shapes, the first one is a typical interconnected cyclone separator. The second is the horn form, except for the cylinder in a regular cyclone separator, and the third is a form that increases the horn's height twice in the second. The numerical analysis simulation of the Cyclone separator used the Fluent software package. The output speed of the Cyclone separator was 5 to 13m/s at 1m/s intervals. The simulated particles include sand, Styrofoam, PET, PP, and PU. Sand particles are assigned a fixed diameter of 2mm, while other particles have a diameter of 3mm. As a result of the analysis, the first form was not separated from plastic. The Styrofoam separation efficiency in the second showed its highest efficiency at 72.7% at 7m/s, and the efficiency decreased after 12m/s as the sand particles were mixed into the plastic attachment location. In the third form, the separation efficiency of Styrofoam at 12m/s was highest at 67.9%.

A Efficient Network Security Management Model in Industrial Control System Environments (산업제어시스템 환경에서 효과적인 네트워크 보안 관리 모델)

  • Kim, Il-Yong;Lim, Hee-Teag;Ji, Dae-Bum;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.664-673
    • /
    • 2018
  • The industrial control system (ICS) has operated as a closed network in the past, but it has recently been linked to information and communications services and has been causing damage due to cyber attacks. As a countermeasure, the Information Communication Infrastructure Protection Act was enacted, but it cannot be applied to various real control environments because there is only a one-way policy-from a control network to a business network. In addition, IEC62443 defines an industrial control system reference model as an international standard, and suggests an area security model using a firewall. However, there is a limit to linking an industrial control network, operating as a closed network, to an external network only through a firewall. In this paper, we analyze the security model and research trends of the industrial control system at home and abroad, and propose an industrial control system security model that can be applied to the actual interworking environments of various domestic industrial control networks. Also, we analyze the security of firewalls, industrial firewalls, network connection equipment, and one-way transmission systems. Through a domestic case and policy comparison, it is confirmed that security is improved. In the era of the fourth industrial revolution, the proposed security model can be applied to security management measures for various industrial control fields, such as smart factories, smart cars, and smart plants.

The Strategies for Forming Governance System to Raise Industrial Competitiveness of Metal and Machinery Industrial Clusters in South-East Region, Korea (동남권 기계.금속산업클러스터의 광역적 지원체계 구축전략)

  • Kwon, O--Hyeok
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.297-317
    • /
    • 2006
  • This article is aimed to find a more successful way to build a metropolitan-wide governance for enhancing industrial cluster in South-East region, Korea. We begin a research with reviewing a current study of regional cluster and its governance. New industrial system and agglomeration changed regional growth theory and urban system. In traditional system, a central city dominated economy of the metropolitan area. However, with development of new transportation and communication technology, a central city lost their superiority to suburban cities. In other words, growing competition between central and suburban cities changed traditional concentration and diffusion theory of urbanization which dominated urban geography for last decades. Next, current situation of development of industrial cluster in South-East region is examined to suggest policy for more competitiveness. South-East region has grown as the most prominent cluster of mechanical engineering and metal industry in Korea since the late 1970s. In the form of agglomeration and network of a specific and its related industry, South-East region has formed a linear industrial belt along with the inter-regional South Coast Highway and contain about ten industrial cities. Accompanying with this growing South-East region, a problem has risen from geographic mismatch between metropolitan-wide industrial cluster and its administrative boundary. Since industrial cluster has no specific administrative boundary, adequate government support for developing industrial cluster has not been provided. Responding to the problem, academics and policy makers maintain need in establishing a metropolitan-wide governance for supporting a cluster. At the end, this paper provides some implication to planners and policy makers.

  • PDF

Flexural & Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges (거더형식 프리캐스트 모듈러교량 연속화 지점부에 적용되는 연결슬래브의 휨성능 및 피로성능 평가)

  • Joo, Bong-Chul;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.517-528
    • /
    • 2013
  • The modular technology has been already applied in automotive industry, plant and shipbuilding industry. Recently, the modular technology was applied in bridge construction. The modular bridge is different from the existing precast bridges in terms of standardized design that the detailed design of members is omitted by using the standard modules; the design of the modular bridge is completed by only assembling the standard modules without design in member level. The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. The link slabs have been used as the type of reinforced concrete structure in US from the 1950's. In 2000's, the link slab using the engineered cementitious concrete (ECC link slab) has been developed. In this study, the RC type link slab which is more reproducible and economic relative to the ECC link slab was used for the continuity of the girder-type precast modular bridges, and the construction detail of RC type link slab was modified. In addition, the modified iterative design method of RC type link slab was proposed in this study. To verify the proposed design method, the flexural tests were conducted using the RC type link slab specimens. Also, the fatigue test using the mock-up specimen was conducted with cyclic loading condition up to two million cycles.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (유체기기의 표면 금속코팅 적용에 따른 구조건전성 평가)

  • Lee, Han-Seop;Lim, Byung-Chul;Kim, Min-Tae;Lee, Beom-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2019
  • The structural integrity of a surface metal coating was evaluated through numerical results to improve the efficiency and reduce the damage caused by cavitation in ships and marine plants. The goal was to ensure structural strength and performance, even if the thickness of the wing is reduced to reduce the weight of the material and surface coating. Analytical methods were used for four models: a non-coating model, one with the same thickness after coating, one with a thickness reduction of 3% after coating, and one with thickness reduction of 5% after coating. With a thickness reduction of 5% after coating, the stress was increased to 12%, and the safety factor was 0.99%, so the structural integrity was insufficient. However, a better material or a thicker coating could allow a sufficient safety factor to be secured. The structural integrity was improved by the coating, and even when the weight was reduced up to 5%, the structural integrity could be sufficiently secured due to the coating effect.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.