• Title/Summary/Keyword: 자동차 잡음

Search Result 159, Processing Time 0.031 seconds

A Novel Speech Enhancement Based on Speech/Noise-dominant Decision in Time-frequency Domain (시간-주파수 영역에서 음성/잡음 우세 결정에 의한 새로운 잡음처리)

  • 윤석현;유창동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.48-55
    • /
    • 2001
  • A novel method to reduce additive non-stationary noise is proposed. The method requires neither the information about noise nor the estimate of the noise statistics from any pause regions. The enhancement is performed on a band-by-band basis for each time frame. Based on both the decision on whether a particular band in a frame is speech or noise dominant and the masking property of the human auditory system, an appropriate amount of noise is reduced using spectral subtraction. The proposed method was tested on various noisy conditions (car noise, Fl6 noise, white Gaussian noise, pink noise, tank noise and babble noise) and on the basis of comparing segmental SNR with spectral subtraction method and visually inspecting the enhanced spectrograms and listening to the enhanced speech, the method was able to effectively reduce various noise while minimizing distortion to speech.

  • PDF

A Spectral Compensation Method for Noise Robust Speech Recognition (잡음에 강인한 음성인식을 위한 스펙트럼 보상 방법)

  • Cho, Jung-Ho
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.9-17
    • /
    • 2012
  • One of the problems on the application of the speech recognition system in the real world is the degradation of the performance by acoustical distortions. The most important source of acoustical distortion is the additive noise. This paper describes a spectral compensation technique based on a spectral peak enhancement scheme followed by an efficient noise subtraction scheme for noise robust speech recognition. The proposed methods emphasize the formant structure and compensate the spectral tilt of the speech spectrum while maintaining broad-bandwidth spectral components. The recognition experiments was conducted using noisy speech corrupted by white Gaussian noise, car noise, babble noise or subway noise. The new technique reduced the average error rate slightly under high SNR(Signal to Noise Ratio) environment, and significantly reduced the average error rate by 1/2 under low SNR(10 dB) environment when compared with the case of without spectral compensations.

Efficient Compensation of Spectral Tilt for Speech Recognition in Noisy Environment (잡음 환경에서 음성인식을 위한 스펙트럼 기울기의 효과적인 보상 방법)

  • Cho, Jungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.199-206
    • /
    • 2017
  • Environmental noise can degrade the performance of speech recognition system. This paper presents a procedure for performing cepstrum based feature compensation to make recognition system robust to noise. The approach is based on direct compensation of spectral tilt to remove effects of additive noise. The noise compensation scheme operates in the cepstral domain by means of calculating spectral tilt of the log power spectrum. Spectral compensation is applied in combination with SNR-dependent cepstral mean compensation. Experimental results, in the presence of white Gaussian noise, subway noise and car noise, show that the proposed compensation method achieves substantial improvements in recognition accuracy at various SNR's.

Robust Speech Recognition with Car Noise based on the Wavelet Filter Banks (웨이블렛 필터뱅크를 이용한 자동차 소음에 강인한 고립단어 음성인식)

  • Lee, Dae-Jong;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2002
  • This paper proposes a robust speech recognition algorithm based on the wavelet filter banks. Since the proposed algorithm adopts a multiple band decision-making scheme, it performs robustness for noise as the presence of noisy severely degrades the performance of speech recognition system. For evaluating the performance of the proposed scheme, we compared it with the conventional speech recognizer based on the VQ for the 10-isolated korean digits with car noise. Here, the proposed method showed more 9~27% improvement of the recognition rate than the conventional VQ algorithm for the various car noisy environments.

Convolutional neural network based traffic sound classification robust to environmental noise (합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델)

  • Lee, Jaejun;Kim, Wansoo;Lee, Kyogu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.469-474
    • /
    • 2018
  • As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.

A Fuzzy Neural-Network Algorithm for Noisiness Recognition of Road Images (도로영상의 잡음도 식별을 위한 퍼지신경망 알고리즘)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.147-159
    • /
    • 2002
  • This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

Licence Plate Recognition Using a Multiple SVM Classifier Combined with Modular Neural Network (모듈라 신경망이 결합된 다중 SVM 분류기를 이용한 번호판 인식)

  • 박창석;김병만;김준우;이광호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.796-798
    • /
    • 2004
  • 기존의 번호판 인식 시스템에서는 대부분 카메라가 고정 상태에서 차량의 전면부를 찍어 영상을 획득하고, 이로부터 번호판을 추출하고 인식한다 그러나 본 연구에서는 기존 연구들과 달리 이동 중인 자동차에 카메라를 설치하여 움직이는 자동차의 영상을 획득하여 번호판을 추출하고 인식한다. 인식하고자 하는 영상이 잡음이나 왜곡 없이 깨끗하다면 인식 과정은 간단하게 수행될 것이다. 그러나, 실제로 얻어진 영상은 간단한 방법으로 인식하기에는 어려올 정도로 왜곡이나 변형이 심한 경우가 많다. 따라서 본 논문에서는 SVM 전단에 모듈라 신경망을 결합하여 인식하는 방법을 사용함으로써 잡음과 같은 변형에 덜 민감하도록 하고자 하였다. 실험결과, 제안하는 분류기를 이용한 방법이 번호판 인식에 우수한 성능을 보임을 확인하였다.

  • PDF

Speech and Noise Recognition System by Neural Network (신경회로망에 의한 음성 및 잡음 인식 시스템)

  • Choi, Jae-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • This paper proposes the speech and noise recognition system by using a neural network in order to detect the speech and noise sections at each frame. The proposed neural network consists of a layered neural network training by back-propagation algorithm. First, a power spectrum obtained by fast Fourier transform and linear predictive coefficients are used as the input to the neural network for each frame, then the neural network is trained using these power spectrum and linear predictive coefficients. Therefore, the proposed neural network can train using clean speech and noise. The performance of the proposed recognition system was evaluated based on the recognition rate using various speeches and white, printer, road, and car noises. In this experiment, the recognition rates were 92% or more for such speech and noise when training data and evaluation data were the different.

Implementation of a Robust Speaker Recognition System in Noisy Environment Using AR HMM with Duration-term (지속시간항을 갖는 AR HMM을 이용한 잡음환경에서의 강인 화자인식 시스템 구현)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.26-33
    • /
    • 2001
  • Though speaker recognition based on conventional AR HMM shows good performance, its lack of modeling the environmental noise makes its performance degraded in case of practical noisy environment. In this paper, a robust speaker recognition system based on AR HMM is proposed, where noise is considered in the observation signal model for practical noisy environment and duration-term is considered to increase performance. Experimental results, using the digits database from 100 speakers (77 males and 23 females) under white noise and car noise, show improved performance.

  • PDF

Speech Enhancement in Noisy Speech Using Neural Network (신경회로망을 사용한 잡음이 중첩된 음성 강조)

  • Choi, Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.165-172
    • /
    • 2005
  • In speech recognition under a noisy environment, it is necessary to construct a system which reduces the noise and enhances the speech. Then it is effective to imitate the human auditory system which has an excellent analytical spectrum mechanism for speech enhancement. Accordingly, this paper proposes an adaptive method using the auditory mechanism which is called lateral inhibition. This method first estimates the noise intensity by neural network, then adaptively adjusts both the coefficients of the lateral inhibition and the adjusting coefficient of amplitude component according to the noise intensity for each input frame. It is confirmed that the proposed method is effective for speech degraded by white noise, colored noise, and road noise based on the spectral distortion measurement.