• Title/Summary/Keyword: 자동차 시스템

Search Result 3,561, Processing Time 0.029 seconds

Unlocking Shared Bike System by Exploiting an Application Log (애플리케이션 로그를 이용한 공유 자전거 시스템의 잠금장치 해제 방법)

  • Cho, Junwan;Lee, Jeeun;Kim, Kwangjo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.719-728
    • /
    • 2019
  • Recently, there has been a growing market for shared mobility businesses that share 'transport' such as cars and bikes, and many operators offer a variety of services. However, if the fare can not be charged normally because of security vulnerability, the operator can not continue the business. So there should be no security loopholes. However, there is a lack of awareness and research on shared mobility security. In this paper, we analyzed security vulnerabilities exposed in application log of shared bike service in Korea. We could easily obtain the password of the bike lock and the encryption key of the AES-128 algorithm through the log, and confirmed the data generation process for unlocking using software reverse engineering. It is shown that the service can be used without charge with a success rate of 100%. This implies that the importance of security in shared mobility business and new security measures are needed.

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

Research Trend on Performance Diagnosis and Restoration Technology of Waste Lithium Ion Battery for Energy Storage Systems (에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향)

  • Lee, Kiyoug;Choi, Jinsub;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.290-296
    • /
    • 2019
  • Lithium-ion batteries are one of the most interesting devices in a number of energy storage systems. In particular, the usage of energy storage devices is increasing due to an increase in demand for renewable energy as a distributed power supply source, stable supply of electric power, and expansion of electric vehicles. Of late, the recycling and restoration technology of waste lithium ion batteries due to the increase in its usage amount as the energy storage system is a socially and economically important research field. In this review, we intend to describe the performance diagnosis, recycling or restoration technology of lithium ion battery and its potential development.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

A Study on Development of Standard Modeling Education Program in Information Security : Focusing on Domestic University Cases (정보보호 교육과정 표준화모델 개발 연구 : 국내 대학 사례를 중심으로)

  • Yang, Jeongmo
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.99-104
    • /
    • 2018
  • Modern society has entered the era of the fourth industrial revolution beyond the information age. In other words, technology innovations such as life science, unmanned automobiles, drone, artificial intelligence, big data, robot technology, Internet of things, and nano-technology are leading the change of the world. In these technologies use and delivery of information is playing a key role, and the field of information security for the safe use of information has become an indispensable discipline. In this sense, it is necessary to standardize the curriculum of universities to foster security manpower to meet the needs of the era. In this paper, we develop and present a model to standardize the curriculum in the field of information security. Using this model, each educational institution will be able to select the necessary track or field to guide the students and cultivate information security manpower effectively.

  • PDF

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.

A Study on the In-Vehicle Voice Interaction Structure Considering Implicit context with Persistence of Conversation (대화 지속성 암묵적 단서를 고려한 차량 내 음성 인터랙션 구조 연구)

  • Namkung, Kiechan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.179-184
    • /
    • 2021
  • In this study, the conversation behavior of users is investigated by using in-vehicle voice interaction system. The purpose of this study is to identify the elements of conversations that the users expect in voice interactions with systems and present the structural improvements to enable the voice interactions similar to those between people. To observe the users' behavior of voice interaction in the vehicle, the data through contextual inquiry are collected and the interview contents are analyzed by using the open coding. We have been able to explore the usefulness of voice interaction features, which are of great importance in that they increase the user's satisfaction with the features and their usage persistence. This study is meaningful in analyzing the user's empirical needs for the technology of interpersonal model from the perspective of conversation.

A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst (디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구)

  • Kim, Yanghwa;Lim, Ockteack;Kim, Hongsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

Roundabout Design and Intervehicle Distance Measure for V2X-based Autonomous Driving (V2X 기반 자율운전을 위한 회전교차로 설계 및 차간 거리 측정)

  • Hwang, Jae-Jeong;Oh, Seok-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2021
  • To improve the performance of self-driving cars, the introduction of V2X, a communication technology that connects vehicles, infrastructure, and vehicles, is essential. Even if traffic information of the other vehicle is known, the structure of the intersection and a distance calculation algorithm are required for accurate calculations at roundabouts. This paper proposes a design algorithm for a rotating intersection and implemented in Matlab that complies with the national design rules and enables accurate calculations. Assuming the roundabout and the entrance/exit path to be a circle, a method for measuring the distance between vehicles at an arbitrary point was proposed using the horizontal shift of the entrance circle to the main circle. The algorithm could be used in fully autonomous vehicles by designing a roundabout suitable for the terrain by arbitrarily varying the angle between branches and the radius of curvature of the entrance and exit roads, and transmitting a warning signal when a collision between two driving vehicles is expected.