• Title/Summary/Keyword: 자동차 사물통신

Search Result 59, Processing Time 0.018 seconds

Design and Implementation of Vehicle Control Network Using WiFi Network System (WiFi 네트워크 시스템을 활용한 차량 관제용 네트워크의 설계 및 구현)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.632-637
    • /
    • 2019
  • Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.

Optimization Model for the Mixing Ratio of Coatings Based on the Design of Experiments Using Big Data Analysis (빅데이터 분석을 활용한 실험계획법 기반의 코팅제 배합비율 최적화 모형)

  • Noh, Seong Yeo;Kim, Young-Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.383-392
    • /
    • 2014
  • The research for coatings is one of the most popular and active research in the polymer industry. For the coatings, electronics industry, medical and optical fields are growing more important. In particular, the trend is the increasing of the technical requirements for the performance and accuracy of the coatings by the development of automotive and electronic parts. In addition, the industry has a need of more intelligent and automated system in the industry is increasing by introduction of the IoT and big data analysis based on the environmental information and the context information. In this paper, we propose an optimization model for the design of experiments based coating formulation data objects using the Internet technologies and big data analytics. In this paper, the coating formulation was calculated based on the best data analysis is based on the experimental design, modify the operator with respect to the error caused based on the coating formulation used in the actual production site data and the corrected result data. Further optimization model to correct the reference value by leveraging big data analysis and Internet of things technology only existing coating formulation is applied as the reference data using a manufacturing environment and context information retrieval in color and quality, the most important factor in maintaining and was derived. Based on data obtained from an experiment and analysis is improving the accuracy of the combination data and making it possible to give a LOT shorter working hours per data. Also the data shortens the production time due to the reduction in the delivery time per treatment and It can contribute to cost reduction or the like defect rate reduced. Further, it is possible to obtain a standard data in the manufacturing process for the various models.

A Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment (차량주행 환경에서 다중라이다센서를 이용한 효과적인 검출 시스템 개발)

  • Kwon, Jin-San;Kim, Dong-Sun;Hwang, Tae-Ho;Park, Hyun-Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.313-320
    • /
    • 2018
  • The importance of sensors on a self-driving vehicle has rising since it act as eyes for the vehicle. Lidar sensors based on laser technology tend to yield better image quality with more laser channels, thus, it has higher detection accuracy for obstacles, pedistrians, terrain, and other vechicles. However, incorporating more laser channels results higher unit price more than ten times, and this is a major drawback for using high channel lidar sensors on a vehicle for actual consumer market. To come up with this drawback, we propose a method of integrating multiple low channel, low cost lidar sensors acting as one high channel sensor. The result uses four 16 channels lidar sensors with small form factor acting as one bulky 64 channels sensor, which in turn, improves vehicles cosmetic aspects and helps widespread of using the lidar technology for the market.

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.

A Study of Modularity in the Perspective of Standardization: A Comparative Analysis of Electronic and Automotive Industries (표준화 정책 측면에서 모듈성 연구: 전자 산업과 자동차 산업 비교 분석)

  • Kim, Dong-hyu;Kang, Byung-Goo;Kim, Chulsik
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.169-199
    • /
    • 2015
  • Information and communication technologies (ICT) have been combined with products from other industries to provide new functionality, as recently shown in the cases of Internet of Things (IoT). Modularity assumes a crucial role in such technological convergence, and has impacts on the relationship between organizations as well as competition within an industry. Interface standards, which ensure the connectivity between modules, serve as a critical factor in the process by which modularity affects organization systems and industry structure. To understand the aforementioned phenomenon, we studied modularity and interface standards with a focus on the interaction between technology and organization systems and subsequent changes in industrial dynamics. This paper examines previous literature on modularity and interface standards in the aspects of product architecture, organization systems, and institutional factors. With this analytical framework, we conducted a comparative analysis of electronic and automotive industries to derive implications for standardization policy. This research has shown the significance of external open interface standards in shaping an industrial landscape where a variety of module producers horizontally compete. It also advises that policymakers take into account product characteristics, engagement of leading firms in an industry, and institutional factors such as WTO law in the design of standardization policy.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

Standardization Strategy of Smart Factory for Improving SME's Global Competitiveness (중소기업의 글로벌 경쟁력 제고를 위한 스마트공장 표준화 전략)

  • Chung, Sunyang;Jeon, Joong Yang;Hwang, Jeong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.545-571
    • /
    • 2016
  • The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.

Artificial Intelligence and College Mathematics Education (인공지능(Artificial Intelligence)과 대학수학교육)

  • Lee, Sang-Gu;Lee, Jae Hwa;Ham, Yoonmee
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • Today's healthcare, intelligent robots, smart home systems, and car sharing are already innovating with cutting-edge information and communication technologies such as Artificial Intelligence (AI), the Internet of Things, the Internet of Intelligent Things, and Big data. It is deeply affecting our lives. In the factory, robots have been working for humans more than several decades (FA, OA), AI doctors are also working in hospitals (Dr. Watson), AI speakers (Giga Genie) and AI assistants (Siri, Bixby, Google Assistant) are working to improve Natural Language Process. Now, in order to understand AI, knowledge of mathematics becomes essential, not a choice. Thus, mathematicians have been given a role in explaining such mathematics that make these things possible behind AI. Therefore, the authors wrote a textbook 'Basic Mathematics for Artificial Intelligence' by arranging the mathematics concepts and tools needed to understand AI and machine learning in one or two semesters, and organized lectures for undergraduate and graduate students of various majors to explore careers in artificial intelligence. In this paper, we share our experience of conducting this class with the full contents in http://matrix.skku.ac.kr/math4ai/.