• 제목/요약/키워드: 자동차 공장

검색결과 214건 처리시간 0.029초

A Study on MES Construction for Automobile Plant in China (중국 자동차 공장의 MES 구축 연구)

  • Lee, Doo-Yong;Zhang, Jing-Lun;Jang, Jung-Hwan;Yoo, Sung-Hee;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • 제14권4호
    • /
    • pp.265-270
    • /
    • 2012
  • This paper deals with the application and effects of MES for H automobile plant in China. There existed the production planning and the different work order in PL painting plant, but we can simultaneously prepare the painting parts and parts delivery and assembly according to painting color by introducing MES. We can respond the change of production planning and operate integratively the PL painting, parts storage and parts delivery and then we can results in reasonable logistics. We obtained the exact production information, correct work order, precise delivery order. We obtained not only the improvement of logistics but also the reduction of inventory.

The Efficient Dynamic Modeling of a Manipulator Robot System (제조 공정용 로봇 매니퓰레이터의 효율적 다물체 동역학 해석 모델링 기술 개발)

  • Song, In-Ho;Ryu, Han-Sik;Choi, Jin-Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • 제3권2호
    • /
    • pp.155-164
    • /
    • 2015
  • Recently, the robot manipulators are needed more slim size and longer reach and more accurate movement for increasing productivity. So, in this paper, the simulation modeling method and the efficient modeling method for new slim & long reach robot has been investigated for forecasting the slim robot performance before making prototype. To do this investigation, the major parts of robot driving system such as motor, belt and reducer devices and parts assembly method have been investigated mainly. And then, using this developed modeling method the new designed robot will be forecasted about the dynamic performance of new designed robot.

Design and Implementation of PLC Automatic Welding System with Power-saving (전력 절약형 PLC 자동용접 시스템 설계 및 구현)

  • Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • 제24권3호
    • /
    • pp.6-12
    • /
    • 2015
  • The welding technology has been used in almost all industries such as automotive, shipbuilding, power plants and industrial machinery. In this study, the design and implementation of PLC $CO_2$ welding automation system were investigated. For these purposes, the structure analysis for driving supporter was performed and specification of automatic voltage regulator, mutual interface of system and circuit diagram were designed in order to contrive power-saving system. As the results, the stability of design for driving supporter could be convinced by numerical analysis and PLC automatic welding system was suitable for welding automation of structural-manufacturing factory capable of producing various and small amount products. Therefore, it was confirmed that PLC $CO_2$ welding automation system could contribute to productivity, stable quality and power-saving.

A Study on Development of Indoor Object Tracking System Using N-to-N Broadcasting System (N-to-N 브로드캐스팅 시스템을 활용한 실내 객체 위치추적 시스템 개발에 관한 연구)

  • Song, In seo;Choi, Min seok;Han, Hyun jeong;Jeong, Hyeon gi;Park, Tae hyeon;Joeng, Sang won;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제19권6호
    • /
    • pp.192-207
    • /
    • 2020
  • In industrial fields like big factories, efficient management of resources is critical in terms of time and expense. So, inefficient management of resources leads to additional costs. Nevertheless, in many cases, there is no proper system to manage resources. This study proposes a system to manage and track large-scale resources efficiently. We attached Bluetooth 5.0-based beacons to our target resources to track them in real time, and by saving their transportation data we can understand flows of resources. Also, we applied a diagonal survey method to estimate the location of beacons so we are able to build an efficient and accurate system. As a result, We achieve 47% more accurate results than traditional trilateration method.

Comparison of Operation Strategies Considering Costs in a Railway Vehicle Assembly Shop with Flow Line Layout (흐름라인 방식의 철도차량 의장공장에서 비용을 고려한 운영전략 비교)

  • Kim, Dong Ok;Shin, Yang Woo;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • 제31권3호
    • /
    • pp.23-34
    • /
    • 2022
  • Due to the characteristics of the railway system, a fleet consists of multiple railway vehicles, and a project contract is made by supplying multiple fleets to the customer. If the project fails to meet the due date, the manufacturer must compensate for the delay to the customer. In this paper, we analyze the operation strategies of the railway vehicle manufacturing factory using simulation, in which the layout adopts the concept of the flow lines, and when shortages of parts are considered. If there is a shortage of parts, the subsequent assembly process cannot proceed due to the nature of the assembly process. Thus, in order to overcome this problem, three strategies for performing assembly work are presented when the events of shortages are occurred. We also compare the strategies with respect to reduce the total cost which includes labor costs and compensation costs for delay.

Anomaly Detection using Geometric Transformation of Normal Sample Images (정상 샘플 이미지의 기하학적 변환을 사용한 이상 징후 검출)

  • Kwon, Yong-Wan;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제22권4호
    • /
    • pp.157-163
    • /
    • 2022
  • Recently, with the development of automation in the industrial field, research on anomaly detection is being actively conducted. An application for anomaly detection used in factory automation is camera-based defect inspection. Vision camera inspection shows high performance and efficiency in factory automation, but it is difficult to overcome the instability of lighting and environmental conditions. Although camera inspection using deep learning can solve the problem of vision camera inspection with much higher performance, it is difficult to apply to actual industrial fields because it requires a huge amount of normal and abnormal data for learning. Therefore, in this study, we propose a network that overcomes the problem of collecting abnormal data with 72 geometric transformation deep learning methods using only normal data and adds an outlier exposure method for performance improvement. By applying and verifying this to the MVTec data set, which is a database for auto-mobile parts data and outlier detection, it is shown that it can be applied in actual industrial sites.

A Study on the Competencies of Automotive Professional Engineers in Korea (자동차 신제품개발 관련 차량기술사의 전문적 업무역량 분석)

  • Kim, Joo-Young;Lim, Se-Yung
    • 대한공업교육학회지
    • /
    • 제33권2호
    • /
    • pp.192-217
    • /
    • 2008
  • This paper investigated the perceived criticalities and patterns of Korean Professional Engineer's competency regarding the working activities of automative product development, manufacturing, etc by using questionnaires responded to the survey which were applied to the automotive professors, experts and professional engineers (vocational parties) by e/mail, etc. This research investigated the following questions: First, what are the characteristic patterns, relevancy and perceived criticalities of Korean Professional Engineer's competencies? Second, What are the ranked priority of the Korean Professional Engineers' competencies? Are there any differency for each item, sub group of job, intelectual criterior of the competencies between relevancy and perceived criticalities according to the types of vocational parties, etc.? Accoring to the results; first, Professor group showed highest points among 3 groups per each item of the competencies by vocational parties Second, Chassis design group ranked top position among the 8 sub groups by vocational parties and, third, Problem Solving Knowledge ranked highest points than any others. Korean Professional Engineers are found to be positioned as key members, leaders and managers on surveying market, product planning, designing product & components, developing component parts, establishing shop with production equipment, managing quality control & material handling, organizing relevant meetings, developing human resources by training and learning, to back up finance with law matters, cooperating with concerned parties to achieve organizational goals, and to coordinate projects. etc, identifying ethical issues and business skills in order to survive and win to be competitive in various kinds of the automotive industry battle fields.

Characteristics and Identification of Ambient VOCs Sources in Busan Industrial Area (부산시 공입지역 환경 대기 중 VOCs 특성 및 발생원 규명)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제33권9호
    • /
    • pp.644-655
    • /
    • 2011
  • VOCs (Volatile Organic Compounds) have adverse effects on human health and have caused serious global air pollution problems such as ozone depletion and cimate changes. The total of 56 target VOCs were selected to be monitored in this study for 4 years (2006~2009). The VOCs were measured every hour. The concentration of BTEX was higher than the other target compounds. Generally, the levels of VOCs measured in this study were higher than those measured by the other studies because Gamjeon and Jangrim monitering sites are located in industrial areas. The seasonal variations showed that the VOCs were the highest in winter. The temporal variations showed that the VOCs were high during commuting time on weekday. PMF model was used to resolve source types and source contributions of VOCs in this study. Identified sources and quantified contributions resolved by PMF were vehicle exhaust (15.22%), thinning solvent (29.83%), surface coating (17.13%), industries (13.95%), LPG vehicle (15.22%), combustion boiler (7.11%) and biogenic source (6.61%). Thinning solvent and Surface coating were the most contributed sources possibly due to manufactures and automobile garages in Gamjeon and solvent and paint manufactures in Sasang-Gu.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권5호
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.