• Title/Summary/Keyword: 자동밸런싱

Search Result 15, Processing Time 0.016 seconds

Gravity and Angular Velocity Profile Effects on the Balancing Performance of an Automatic Ball Balancer (자동볼평형장치의 밸런싱 성능에 대한 중력과 속도파형의 영향)

  • 정진태;정두한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.418-423
    • /
    • 2003
  • The balancing performance of an automatic ball balancer (ABB) in the vertical or horizontal position is studied in this paper. Considering the effects of gravity and angular velocity profiles, a physical model for an ABB installed on the Jeffcott rotor is adopted. The non-linear equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-u method. From the computed responses, the effects of gravity and angular velocity profiles on the balancing performance are investigated. It is found that the rotor with ABB can be balanced regardless of the gravity effect. It is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

  • PDF

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.

Dynamic Analysis of an Automatic Ball Balancer with Triple Races (삼중레이스를 갖는 자동평형장치의 동적 해석)

  • Jwa, Seong-Hun;Jo, Eun-Hyeong;Son, Jin-Seung;Park, Jun-Min;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.764-774
    • /
    • 2002
  • Dynamic behaviors are analyzed for an automatic ball balancer (ABB) with triple races, which is a device to reduce the unbalanced mass of optical disk drives (ODD) such as CD-ROM or DVD drives. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. It is shown that the polar coordinate system provides the complete stability analysis while the rectangular coordinate system used in other previous studies has limitations on the stability analysis. For the stability analysis, the equilibrium positions and the linearized perturbation equations are obtained by the perturbation method. Based on the linearized equations, the stability of the system is analyzed around the equilibrium positions; furthermore, to confirm the stability, the time responses for the nonlinear equations of motion are computed by using a time integration method and experimental analyses are performed. Theoretical and experimental results show a superiority of the ABB with triple races.

Generation of Robotic Assembly Aequences with Consideration of Line Balancing Using a Simulated Annealing (조립라인의 밸런싱을 고려한 자동 조립 순서 추론)

  • Hong, Dae-Seon;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.112-118
    • /
    • 1995
  • In designing assembly lines, it is required that the lines should not only meet the demand of the product, but also minimize the assembly cost associated with the line. For such a purpose, numerous research efforts have been made on either the assembly sequence generation or the assembly line balancing. However, the works dealing with both the research problems have been seldom reported in literature. When assembly sequences are generated without consideration of line balancing, additional cost may be incurred, because the sequences may not guarantee the minimum number of workstations. Therefore, it is essential to consider line balancing in the generation of cost-effective assembly sequences. To incorporate the two research problems into one, this paper treats a single-model and deterministic (SMD) assembly line balancing (ALB) problem, and proposes a new method for generating line-balanced robotic assembly sequences by using a simulated annealing. In this method, an energy function is derived in consideration of the satisfaction of assembly constraints, and the minimization of both the assembly cost and the idle time. Then, the energy function is iteratively minimized and occasionally perturbed by the simulated annealing. When no further change in energy occurs, an assembly sequence with consideration of line balancing is finally found. To show the effectiveness of the proposed scheme, a case study for an electrical relay is presented.

  • PDF

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.113-120
    • /
    • 2023
  • Smart farms are steadily increasing in research to minimize labor, energy, and quantity put into crops as IoT technology and artificial intelligence technology are combined. However, research on efficiently managing crop growth information in smart farms has been insufficient to date. In this paper, we propose a management technique that can efficiently monitor crop growth information by applying autonomous sensors to smart farms. The proposed technique focuses on collecting crop growth information through autonomous sensors and then recycling the growth information to crop cultivation. In particular, the proposed technique allocates crop growth information to one slot and then weights each crop to perform load balancing, minimizing interference between crop growth information. In addition, when processing crop growth information in four stages (sensing detection stage, sensing transmission stage, application processing stage, data management stage, etc.), the proposed technique computerizes important crop management points in real time, so an immediate warning system works outside of the management criteria. As a result of the performance evaluation, the accuracy of the autonomous sensor was improved by 22.9% on average compared to the existing technique, and the efficiency was improved by 16.4% on average compared to the existing technique.