• Title/Summary/Keyword: 자동띄어쓰기

Search Result 61, Processing Time 0.033 seconds

Two Step Automatic Korean Word Spacing Model Based on Deep Neural Network (심층신경망 기반 2단계 한국어 자동 띄어쓰기 모델)

  • Choi, Gihyeon;Kim, Sihyung;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.593-595
    • /
    • 2018
  • 자동 띄어쓰기는 띄어쓰기가 되어있지 않은 문장에 대하여 띄어쓰기를 해주거나, 문장에 있는 잘못된 띄어쓰기를 교정하는 것을 말한다. 기존의 자동 띄어쓰기 연구는 주로 모든 음절을 붙인 후 새로 띄어쓰기 태그를 입력하는 방법을 사용하여 사용자가 입력한 올바른 띄어쓰기 정보를 활용하지 못하였다. 따라서 본 논문에서는 모두 붙여 쓴 문장에 공백을 넣어주는 띄어쓰기 삽입 모델과 사용자의 입력 정보를 이용하여 문장의 띄어쓰기 오류를 교정해주는 오류교정 모델이 결합된 통합모델을 제안한다. 제안된 모델은 에러율 10%일 때 F1-score가 98.85%까지 향상되었다.

  • PDF

Exploiting Features of Writer's Intent in Automatic Spacing (자동 띄어쓰기에서 글쓴이 의도를 반영한 자질의 활용)

  • Lee, Jeong-wook;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.528-531
    • /
    • 2021
  • 띄어쓰기에 대한 오류는 한국어 처리 전반에 영향을 주므로 자동 띄어쓰기는 필수적인 요소이다. 글쓴이의 대부분은 띄어쓰기 오류를 범하지 않으므로 글쓴이의 의도가 띄어쓰기 시스템에 반영되어야 한다. 그러나 대부분의 자동 띄어쓰기 시스템은 모든 띄어쓰기 정보를 제거하고 새로이 공백문자를 추가하는 방법으로 띄어쓰기를 수행한다. 이런 문제를 완화하기 위해서 본 논문에서는 기계학습에서 글쓴이의 의도가 반영된 자질을 추가하는 방법을 제안한다. 실험을 위해서 CRFs(Conditional Random Fields)를 사용하여 기존 시스템과 사용자의 의도를 반영한 띄어쓰기 시스템과의 성능을 비교하고 분석한다.

  • PDF

Bi-LSTM-CRF and Syllable Embedding for Automatic Spacing of Korean Sentences (음절 임베딩과 양방향 LSTM-CRF를 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.605-607
    • /
    • 2018
  • 본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.

  • PDF

A Recognition of Word Spacing Errors Using By Syllable (음절 bigram 특성을 이용한 띄어쓰기 오류의 인식)

  • 강승식
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.85-88
    • /
    • 2000
  • 대용량 말뭉치에서 이웃 음절간 공기빈도 정보를 추출하여 한글의 bigram 음절 특성을 조사하였다. Bigram 음절 특성은 띄어쓰기가 무시된 문서에 대한 자동 띄어쓰기, 어떤 어절이 띄어쓰기 오류어인지 판단, 맞춤법 검사기에서 절차 오류어의 교정 등 다양한 응용분야에서 유용하게 사용될 것으로 예상되고 있다. 본 논문에서는 한글의 bigram 음절 특성을 자동 띄어쓰기 및 입력어절이 띄어쓰기 오류어인지를 판단하는데 적용하는 실험을 하였다. 실험 결과에 의하면 bigram 음절 특성이 매우 유용하게 사용될 수 있음을 확인하였다.

  • PDF

A Recognition of Word Spacing Errors Using By Syllable Bigram (음절 bigram 특성을 이용한 띄어쓰기 오류의 인식)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.85-88
    • /
    • 2000
  • 대용량 말뭉치에서 이웃 음절간 공기빈도 정보를 추출하여 한글의 bigram 음절 특성을 조사하였다. Bigram 음절 특성은 띄어쓰기가 무시된 문서에 대한 자동 띄어쓰기, 어떤 어절이 띄어쓰기 오류어인지 판단, 맞춤법 검사기에서 철자 오류어의 교정 등 다양한 응용분야에서 유용하게 사용될 것으로 예상되고 있다. 본 논문에서는 한글의 bigram 음절 특성을 자동 띄어쓰기 및 입력어절이 띄어쓰기 오류어인지를 판단하는데 적용하는 실험을 하였다. 실험 결과에 의하면 bigram 음절 특성이 매우 유용하게 사용될 수 있음을 확인하였다.

  • PDF

Automatic Korean Spacing Words Correction System With Bidirectional Longest Match Strategy (양방향 최장일치법을 이용한 한국어 띄어쓰기 자동 교정 시스템)

  • Choi, Jae-Hyuk
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.145-151
    • /
    • 1997
  • 기존의 맞춤법 검사기의 단점인 오류 수정 작업과 처리 시간을 감소시키면서, 높은 오류 교정의 정확률을 보장하는 자동 오류 교정 시스템의 개발을 위한 첫 단계로써 한국어 오류의 80% 이상을 차지하는 띄어쓰기 오류에 대한 자동 교정 시스템을 개발하였다. 본 논문에서는 우리가 사용하는 일반 문서에서 띄어쓰기가 잘못된 단어에 대한 교정과 오류 단어에 대한 검색을 행하기 위하여, 띄어쓰기 교정 시스템의 개발 단계에서 현실적으로 고려해야 할 사항과 교정 정확률 및 처리 속도를 높이기 위한 본 시스템의 띄어쓰기 오류 루틴을 제시한다. 본 시스템의 처리 결과, 올바른 어절을 제외한 띄어쓰기가 잘못된 오류 단어(띄붙 오류와 붙띄 오류 포함)에 대해 약 98.7%의 띄어쓰기 교정 성공률을 보였다.

  • PDF

Automatic Word Spacing based on Conditional Random Fields (CRF를 이용한 한국어 자동 띄어쓰기)

  • Shim, Kwang-Seob
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.2
    • /
    • pp.217-233
    • /
    • 2011
  • In this paper, an automatic word spacing system is proposed, which assumes sentences with no spaces between the words and segments them into proper words. Segmentation is regarded as a labeling problem in that segmentation can be done by attaching appropriate labels to each syllables of the given sentences. The system is based on Conditional Random Fields, which were reported to show excellent performance in labeling problems. The system is trained with a corpus of 1.12 million syllables, and evaluated with 2,114 sentences, 93 thousand syllables. The best results obtained are 98.84% of syllable-based accuracy and 95.99% of word-based accuracy.

  • PDF

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Design of Efficient Mobile Keypad Based on Automatic Word Spacing (자동 띄어쓰기 기반의 효율적인 영문 휴대폰 키패드 설계)

  • Kim, Hyun-Min;Kim, Yong-Hyuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.153-156
    • /
    • 2010
  • 휴대폰으로 영문을 입력하기 위해서는 일반적으로 멀티탭 (multitap) 방식을 사용한다. 멀티탭 방식은 원하는 알파벳을 입력하기 위해 키를 반복적으로 눌러줘야 한다. 본 논문은 키를 누르는 횟수를 줄일 수 있는 효율적인 키패드를 구한다. 기존의 멀티탭 기반의 휴대폰 키패드 설계와 자동 띄어쓰기 관련 연구를 조사한다. 그리고 자동 띄어쓰기 사용을 가정한 상태에서의 휴대폰 키패드를 설계하고 이를 비교한다. 키가 눌러진 총 횟수가 작을수록 효율적인 키패드인 것으로 평가했다. 알파벳 순서를 유지한 키패드 디자인과 유지하지 않은 디자인으로 나누고 8 ~ 12개의 키를 가지는 키패드에 대한 디자인을 각각 구했다. 평가를 위한 데이터로 실제 사용되는 영문 SMS 데이터를 구해 사용했다. 실험 결과 자동 띄어쓰기를 하지 않은 키패드보다 자동 띄어쓰기를 한 키패드의 성능이 약간 개선됨을 볼 수 있다.

  • PDF

Word Segmentation for Korean with Syllable-Level Combinatory Categorial Grammar (음절단위 결합범주문법을 이용한 한국어 문장의 자동 띄어쓰기)

  • Lee, Ho-Joon;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.47-54
    • /
    • 2002
  • 한국어의 띄어쓰기 현상은 단어별로 정형화된 띄어쓰기를 하는 영어나 띄어쓰기가 발달하지 않은 중국어, 일본어와는 다르게 독특한 형태로 발전되어 왔다. 기존에는 부분적인 띄어쓰기 오류를 바로잡아주는 형태의 연구가 많이 진행되었지만 이제는 문자인식이나 음성인식 등의 연구와 결합하여 띄어쓰기가 완전히 무시된 문장의 띄어쓰기를 자동으로 처리하는 방법에 대한 연구가 활발히 진행 중이다. 본 논문에서는 한국어의 띄어쓰기 현상과 띄어쓰기 복원 방법에 대한 기존의 연구에 대해서 살펴보고 기존의 방법으로는 저리하기 힘들었던 형태를 음절단위 결합범주문법으로 설명한다.

  • PDF