• Title/Summary/Keyword: 자기 조향장치

Search Result 8, Processing Time 0.019 seconds

Development of Simulator for Performance Test of Electric Power Steering of Light Weight Vehicle (경차용 전동조향장치의 성능평가를 위한 시뮬레이터의 개발)

  • Hahn, Chang-Su;Rhee, Meung-Ho;Park, Ho;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.923-929
    • /
    • 2001
  • Steering system is most important for vehicle in safety and driving feel. However, testing using real car to improve steering feel is often difficult in aspect to repeatability, safety and money. Repeatability in testing steering system is very important because steering feel for driver is variable according to the environment condition. And steering testing of vehicle is so dangerous that driver may not concentrate in testing. In this paper, the steering system simulator using front part of steering and suspension system was developed. We can test the electric power steering system for the light weight vehicle using this simulator cheap, safely and repeatably.

A Study on the Characteristics of Steering Angle Sensor using Magnetic Induction (자기유도를 이용한 조향각 센서의 특성 연구)

  • Kim, Byeong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • We have development the steering angle sensor using not only detecting parts but also integrating technique with semiconductors for automobile applications. The performance design and analysis of the steering angle sensor for intelligent vehicles is complicated due to variety of parameters. In this study, the performance characteristics of the angle sensor were analyzed using test rig. By means of magnetic induction technique, these new the steering angle sensors showed excellent magnetic characteristics. The detection range of steering angle sensor obtained was ${\pm}800^{\circ}$, the maximum non-linearity is 0.744% Full Span and the temperature range was $-40^{\circ}C{\sim}+125^{\circ}C$. With this conclusive, the inductive angle sensor was quite satisfactory for many applications in intelligent vehicles.

A study on the Critical speed of Korean Tilting Train Hanbit200 (한국형 틸팅열차 한빛200의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.257-263
    • /
    • 2007
  • The critical speed above which the vehicle become unstable is one of the items that should be verified in the development of a new train. In the case of a high speed tilting train, which requires both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are in conflict with each other in the conventional train design. The main purpose of the present work is to estimate the linear and non-linear critical speeds of 200km/h Korean Tilting Train 'Hanbit200' under development. The newly developed self-steering mechanism was attached to the tilting train to ensure that the critical speed falls under the lower yaw stiffness which is needed to secure higher curving performance. The simulation for predicting the critical speed was done by a commercially available vehicle dynamics software. A full scale roller rig test was carried out to validate the numerical results and to verify the effectiveness of the self-steering mechanism.

The Characteristic Analysis of a Single-Layer 12-slot 10-pole PM Synchronous Motor with Asymmetric Teeth Widths (단층권 12-Slot 10-Pole 영구자석 동기 전동기의 비대칭 치폭에 따른 특성 해석)

  • Kim, Tae-Heoung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1206-1209
    • /
    • 2018
  • Single-layer winding configuration in a 12-slot 10-pole Permanent Magnet Synchronous Motor (PMSM) has been adopting in electrical power steering (EPS) systems to get the high fault tolerance capability of the motor. However, the motor with single-layer winding has magnetic circuit saturations in the teeth, which deteriorates its performance. In this paper, we propose asymmetric teeth widths to get over the demerit, and analyze the effect of the teeth width ratio variations on the performances of the PMSM. As a result, we suggest the most valuable teeth width ratio for designing the PMSM with a single-layer winding configuration.

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

Study for Semi-Steering system for Urban Maglev (도시형자기부상차량의 반능동 조향장치에 대한 연구)

  • Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1080-1084
    • /
    • 2011
  • Urban maglev should have such characteristics as not only environmentally friendliness and excellent driving capability but also curve negotiation performance because its routes have many sharp curves. Due to normal mechanism of urban maglev its relative displacements of secondary spring are bigger than conventional railway vehicle and the centering force of levitation magnet is smaller than wheel-on-rail system. These features of maglev affect the curving negotiation and so the additional steering device is to be required on Urban maglev to improve the running performance at sharp curve of less than about R50m. Some developed urban maglev had the passive steering device which consists of mechanical linkage or hydraulic cylinder and closed-route piping. But it has drawback as complexity of layout of understructure of vehicle and functional limitation of passive mechanism regarding transient curve. These demerits could be solved by using active steering system. But it has a weak point that an active device should have actuators and additional inverter or hydraulic power source. In this paper, the semi-active steering system for urban maglev is to be introduced.

  • PDF

Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper (MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Weon-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF

Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper (MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.