This paper proposes an autonomous machine learning method applicable to the BCI(Brain-Computer Interface) is based on the self-organizing Kohonen method, one of the exemplary method of unsupervised learning. In addition we propose control method of learning region and self machine learning rule using an interactive function. The learning region control and machine learning was used to control the side effects caused by interaction function that is based on the self-organizing Kohonen method. After determining the winner neuron, we decided to adjust the connection weights based on the learning rules, and learning region is gradually decreased as the number of learning is increased by the learning. So we proposed the autonomous machine learning to reach to the network equilibrium state by reducing the flow toward the input to weights of output layer neurons.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.232-234
/
2004
강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)이다. 문제가 커짐에 따라 목적을 이루기 위해서 더 않은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위칠 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다. 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 이러한 문제점들을 해결하기 위해 복잡계 네트워크(Complex Network)가 갖는 작은 세상 성질(Small world Property)에 착안하여 자기조직화 하는 생장 네트워크(Self organizing growing network)를 기반으로 한 환경 표현 모델이 제안된 바 있다. 이러한 모델에서는 문제 크기가 커지더라도 네트워크의 사이즈가 크게 커지지 않기 때문에 문제의 난이도가 크기에 따라 크게 증가하지 않을 것을 기대할 수 있다. 본 논문에서는 이러한 환경 모델을 사용한 강화 학습 알고리즘을 구현하고 실험을 통하여 각 모델이 강화 학습의 문제 사이즈에 따른 성능에 끼치는 영향에 대해 알아보았다.
We propose a two-stage document layout segmentation method. At the first stage, as top-down segmentation, morphological distance map algorithm extracts a collection of rectangular regions from a given input image. This preliminary result from the first stage is employed as input parameters for the process of next stage. At the second stage, a machine-learning algorithm is adopted RBF network, one of neural networks based on statistical model, is selected. In order for constructing the hidden layer of RBF network, a data clustering technique bared on the self-organizing property of Kohonen network is utilized. We present a result showing that the supervised neural network, trained by 300 number of sample data, improves the preliminary results of the first stage.
Journal of the Computational Structural Engineering Institute of Korea
/
v.24
no.2
/
pp.141-148
/
2011
This study presents the optimal grouping technique of columns which groups together columns of similar shortening trends to improve the efficiency of column shortening compensation. Here, Kohonen's self-organizing feature map which can classify patterns of input data by itself with unsupervised learning was used as the optimal grouping algorithm. The Kohonen network applied in this study is composed of two input neurons and variable output neurons, here the number of output neuron is equal to the column groups to be classified. In input neurons the normalized mean and standard deviation of shortening of each columns are inputted and in the output neurons the classified column groups are presented. The applicability of the proposed algorithm was evaluated by applying it to the two buildings where column shortening analyses had already been performed. The proposed algorithm was able to classify columns with similar shortening trends as one group, and from this we were able to ascertain the field-applicability of the proposed algorithm as the optimal grouping of column shortening.
Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.
Proceedings of the Korean Society of Computer Information Conference
/
2015.07a
/
pp.250-251
/
2015
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.17
no.3
/
pp.55-67
/
2007
In ad hoc network, especially in the environment which the system authority only exists at the beginning of the network, it is very important problem how to issue the certificates in self-initialized public key scheme that a node generates its certificate with public and private key pair and is signed that by the system authority. In order to solve this problem, early works present some suggestions; remove the system authority itself and use certificate chain, or make nodes as system authorities for other nodes' certificates. In this paper, we suggest another solution, which can solve many problem still in those suggestions, using proxy signature and threshold signature, and prove its performance using simulation and analyse its security strength in many aspects.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.1B
/
pp.61-67
/
2006
Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.
Journal of the Korean Society for information Management
/
v.27
no.2
/
pp.61-74
/
2010
The knowledge sharing in a knowledge management process is much affecting generation and distribution of knowledge. Especially, the knowledge distribution is being revitalized with the center of social media service like twitter and library service 2.0 in the knowledge-based IT (Information Technology) environment. The present research analyzed the structure and characteristics of a social network inside an organization that is growing like an organism through self-organization through tools for SNA (Social Network Analysis) and multiple regression analysis of independent variables such as 1) a relationship between social network's structure and knowledge sharing, 2) a relationship between structural holes and knowledge sharing influence of centrality, 3) a relationship between individual ability and knowledge sharing of information technology and work recognition.
In this paper, we propose a new learning algorithm, ASOFM(Adaptive Self Organizing Feature Map), to solve the defects of Kohonen's Self Organiaing Feature Map. Kohonen's algorithm is sometimes stranded on local minima for the initial weights. The proposed algorithm uses an object function which can evaluate the state of network in learning and adjusts the learning rate adaptively according to the evaluation of the object function. As a result, it is always guaranteed that the state of network is converged to the global minimum value and it has a capacity of generalized learning by adaptively. It is reduce that the learning time of our algorithm is about $30\%$ of Kohonen's.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.