• Title/Summary/Keyword: 자기장센서

Search Result 183, Processing Time 0.022 seconds

Modeling and Calibration of Wrist Magnetic Sensor for Measuring Wrist Gesture (손목운동 측정을 위한 손목 자기장 센서의 모델링 및 캘리브레이션)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • Recently, as various wearable devices and IoT technologies have emerged and been applied to real applications, various sensors have been developed to satisfy their purposes and applied. In even In medical applications, IoT technologies have been applied gradually, and particularly, magnets and magnetic sensors have already been playing an important role in the medical industry. In wrist rehabilitation, this kind of sensor technology has enabled us to easily and conveniently measure wrist movement and gestures because there are no tangled lines required between the magnet and sensor. However, one of the drawbacks is that nonlinear output is generated because of the characteristics of a magnetic field. Also, the movement of the wrist joint involves small bones, and so it is not easy to simply model the movement. In order to resolve these issues and accurately measure sensor data, a calibration procedure is inevitable in the measurement. Thus, this paper proposes a practical model and simple calibration methods for measuring the distance between a magnet and a magnetic sensor.

Magnetic Signals Analysis for Vehicle Detection Sensor and Magnetic Field Shape (자기신호분석을 통한 차량의 감지센서와 자기형상에 관한 연구)

  • Choi, Hak-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.349-354
    • /
    • 2015
  • This paper is about utilizing magnetic sensor to measure magnetic signal and analyze the form of magnetic signal for vehicle detection. For magnetic sensor, MR sensor from Honeywell company was used, and Helmholtz coil of which 3 axis' length is 1.2 m was manufactured to check the capability of the sensor and estimate its ability to detect the magnetic field. Vehicle detection was performed in following steps: installing sensor in road lane and non-road lane; estimating magnetic field when the vehicle is run by the driver; and estimating magnetic field of 7 different vehicles with different sizes. Also, sensor was installed at SUV and small-sized vehicle's park and non-park area to analyze the form of magnetic field. Lastly, the form of magnetic field made by different parts of the vehicle was analyzed. Based on the analysis, the form of magnetic field's magnetic peak value was bigger for road lane than non-road lane, complicated form was useful to distinguish the road lane above the installed sensor and the location of the running car, and the types of vehicle could be sorted because the variance of the magnetic field was bigger for bigger size of the vehicle. Also, it was confirmed that the forms of vehicle in parts-by-parts estimates.

Developing Wearable Joystick Device Using Magnetic Sensor (자기장 센서를 이용한 웨어러블 조이스틱 장치의 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • There has been demand for many magnetic sensor applications, and to develop low-cost devices, it is critical to accurately understand the behavior of the magnetic field and the characteristics of magnetic sensors and target devices during initial development phase. The magnetic field has been known to have very complicated nonlinear data to calculate, so it has required expensive computing machines or research to accurately calculate the magnetic sensor values. However, this paper introduces a characteristic of a magnetic sensor called the giant magnetoresistance (GMR) and proposes simple and sufficient approaches to develop a wearable joystick device using a magnetic sensor. Particularly, this paper introduces the design factors for how to properly develop a low-cost wearable joystick device using magnetic sensors after carefully considering the mechanism of a real joystick and the characteristics of magnetic sensors. As a result, user test results are provided to show how users can operate this new wearable joystick device.

Construction of Measuring System for Magnetic Properties Measurement of Azimuth Angle Sensor (방위각센서의 자기특성 측정 장치 제작)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • North indicating azimuth angle sensors have been used in airplanes, ships traditionally and nowadays employed in smart phones. For the azimuth and roll angle measurement of the sensor, 3-axis acceleration sensor was added to the 3-axis magnetic field sensor. In this work, we have constructed a measuring system for the measurement of the magnetic field and the angle uncertainty of the magnetic field sensors. Measuring system could be useful not only in non-magnetic laboratory but also in normal laboratory, we constructed small size of 3-axis Helmholtz coils for the compensation environment magnetic field (Earth magnetic field and magnetic field from building) and the generation of magnetic field for the test of magnetic field sensor. The constructed measuring system could compensate environment magnetic field below 10 nT level and generate 3-dimensional magnetic field with magnitude uncertainty of 0.2 % and angle error of $0.2^{\circ}$ within the volume of ${\pm}30mm$ diameter at center of Helmholtz coils. For the conformation of developed measuring system, We tested commercially available 3-axis magnetometer and heading sensor.

Wearable Magnetic Sensor Device Using Wireless Sensor Network (무선센서 네트워크를 이용한 웨어러블 자기장 센서 장치)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.294-298
    • /
    • 2021
  • Recently, many electronic devices have been integrated with various kinds of wireless sensor network technologies that have been enabled with wireless network connections. These wireless sensor network devices have adopted various kinds of wireless network technologies. On the other hand, because each wireless network technology has its advantages and disadvantages, the target and purposes should be considered carefully at the beginning of the development. In particular, the approach to the magnetic sensor should be considered carefully because it has its own characteristic compared to general sensors. The magnetic field generates nonlinear data. This paper introduces the design aspects to reflect low cost and wearable devices to use in a wireless sensor network. In addition, this paper addresses how to select proper sensor network technology. As a result, wireless sensor network devices were integrated using Zigbee and showed the performance of the throughput.

Data Analysis and Processing Methods of Magnetic Sensor for Measuring Wrist Gesture (손목운동 측정을 위한 자기장 센서 데이터의 분석 및 처리 방법)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.28-36
    • /
    • 2020
  • As many types of magnetic sensors are widely applied in various industries, the analysis and processing of magnetic sensor data need to be accurate. On the other hand, owing to the complexity of the magnetic field line caused by a moving magnet, the magnetic data generated by magnetic sensors are unpredictably nonlinear. Many industry systems using magnetic sensors have struggled with the nonlinear nature of magnetic sensor data. To reduce the effect of the nonlinearity, they have the target objects fixed firmly. Therefore, to collect accurate and reliable data, considerable efforts have been made to resolve the issues with the expensive tools and systems required. Through this paper, to tackle the issues, the data analysis and methodologies, including intelligent algorithms, are presented for the wrist rehabilitation system using magnetic sensors while being implemented without using expensive tools or systems. On processing magnetic sensor data, this paper adopted an intelligent algorithm, fuzzy logic, and compared the performance of other algorithms for comparison.

Development of KAMG engineering model in KPLO mission

  • Jin, Ho;Kim, Khan-Hyuk;Son, Derac;Lee, Seongwhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2018
  • 대한민국 달탐사 시험용 궤도선은 2020년 말에 발사를 예정으로 위성개발이 진행되고 있다. KPLO(Korea Pathfinder Lunar Orbiter) 라고 명명된 달 궤도선에는 6개의 탑재체가 있으며, 경희대학교 우주탐사학과에서는 달 주위 공간 및 달 표면의 이상 자기장 영역을 관측하는 탑재체 (KMAG: Kplo MAGnetometer)를 개발하고 있다. 자기장센서는 3축 플럭스게이트 센서를 사용하며 약 0.2nT 이하의 분해능을 가지고 있다. 측정주기는 10Hz이며 총 무게는 3.5kg 이다. 1.2m 길이의 붐(Boom) 구조물 내부에 3개의 자기장 센서들을 설치하였으며 가능한 위성체로부터 거리를 두고 자기장을 측정하는 구조로 구성하였다. 시험모델 개발을 완료하고, 개발된 탑제체의 환경시험결과와 성능시험결과 요구조건에 부합되는 결과를 얻었다. KAMG는 국내최초의 심우주 탐사용 자기장 측정기로서 향 후, 행성 및 소행성 탐사 등에 활용하기 위한 기반 기술로 활용할 수 있을 것으로 기대한다.

  • PDF

Detection of Size and Position in Magnetic Inductance Tomography System (Magnetic Inductance Tomography System을 이용한 대상물체의 위치와 크기 판정)

  • Seo, Kang;Park, Gwan-Soo;Park, Eun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1074-1076
    • /
    • 2005
  • Magnetic Inductance Tomography System은 비투자율이 공기보다 큰 대상물체를 외부에서 자기장을 인가하여 자기장의 변화를 자기센서로 측정하여 대상물체의 형상, 위치, 비투자율을 측정하고 판단하는 시스템이다. Magnetic Inductance Tomog-raphy System은 비투자율이 공기보다 큰 대상물체를 외부에서 자기장을 인가하여 자기장의 변화를 자기센서로 측정하여 대상물체의 형상, 위치, 비투자율을 측정하고 판단하는 시스템이다. Magnetic Inductance To-mography System은 대상물체의 위치, 모양, 크기에 따라 자기장의 변화가 달라게 된다. 대상물체를 실시간으로 측정하기 위하여 Magnetic Inductance To-mography System을 자기장 발생부와 신호변환부, 모니터링 부로 구분하여 구축하였다. 또한 대상물체를 위치를 이동시키거나 크기를 변경하여 대상물체의 신호를 해석, 측정하였다.

  • PDF

Vector Calibration for Geomagnetic Field Based Indoor Localization (지자기 기반 실내 위치 추정을 위한 지자기 벡터 보정법)

  • Son, Won Joon;Choi, Lynn
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.3
    • /
    • pp.25-30
    • /
    • 2019
  • Magnetic sensors have the disadvantage that their vector values differ depending on the direction. In this paper, we propose a magnetic vector calibration method for geomagnetic-based indoor localization estimates. The fingerprinting technique used in geomagnetic-based indoor localization the position by matching the magnetic field map and the magnetic sensor value. However, since the moving direction of the current user may be different from the moving direction of the person who creates the magnetic field map at the collection time, the sampled magnetic vector may have different values from the vector values recorded in the field map. This may substantially lower the positioning accuracy. To avoid this problem, the existing studies use only the magnitude of magnetic vector, but this reduces the uniqueness of the fingerprint, which may also degrade the positioning accuracy. In this paper we propose a vector calibration algorithm which can adjust the sampled magnetic vector values to the vector direction of the magnetic field map by using the parametric equation of a circle. This can minimize the inaccuracy caused by the direction mismatch.

Displacement sensor for Measuring magnetostriction of Amorphous Ribbon (비정질 리본의 자기변형 측정용 광섬유 변위센서)

  • 유권상;김철기;김중복;김현아
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.36-39
    • /
    • 1996
  • We have constructed a disp1acerrent sensor for measuring dynamic magnetostriction of an arrvrphous ribbon under alternating magnetic field using fiber optic Fabry-Perot interferorreter. The signal of the sensor was depen¬dent on the index matching oil and the optical isolator. The resolution of the sensor was $30{\AA}$ and the measured peak to peak magnetostriction of the amorphous ribbon $Fe_{81}B_{13.5}Si_{3.5}C_{2}$ was $28{\times}10^{-6}$.

  • PDF